cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A277948 Squares whose largest decimal digit is 4.

Original entry on oeis.org

4, 144, 324, 400, 441, 1024, 1444, 2304, 2401, 10404, 14400, 23104, 32041, 32400, 33124, 40000, 40401, 44100, 101124, 102400, 103041, 110224, 114244, 121104, 131044, 144400, 203401, 204304, 213444, 230400, 232324, 240100, 300304, 301401, 421201, 1004004
Offset: 1

Views

Author

Colin Barker, Nov 05 2016

Keywords

Comments

A subsequence of A158082, in turn a subsequence of A000290.

Crossrefs

Cf. A000290 (the squares).
Cf. A277961 (square roots of these terms).
Cf. A277946, A277947, A295015, ..., A295019 (analog for largest digit = 2, 3, 5, ..., 9).
Cf. A058412, A058411, ..., A058474 and A136808, A136809, ..., A137147 for other restrictions on digits of squares.

Programs

  • Magma
    [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 4]; // Vincenzo Librandi, Nov 06 2016
  • Mathematica
    Select[Range[1100]^2,Max[IntegerDigits[#]]==4&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==4, listput(L, n^2))); Vec(L)
    

Formula

a(n) = A277961(n)^2. - M. F. Hasler, Nov 12 2017
Intersection of A000290 and A277966. - M. F. Hasler, Nov 15 2017

A158304 Numbers k such that k^2 contains no digit greater than 4.

Original entry on oeis.org

0, 1, 2, 10, 11, 12, 18, 20, 21, 32, 38, 48, 49, 100, 101, 102, 110, 111, 120, 149, 152, 179, 180, 182, 200, 201, 210, 318, 320, 321, 332, 338, 348, 351, 361, 362, 380, 451, 452, 462, 480, 482, 490, 548, 549, 649, 1000, 1001, 1002, 1010, 1011, 1012, 1020, 1021
Offset: 1

Views

Author

N. J. A. Sloane, May 23 2010

Keywords

Crossrefs

Programs

  • Maple
    A158304 := proc(n) option remember; if n= 1 then 0; else for a from procname(n-1)+1 do d := convert(convert(a^2,base,10),set) ; if max(op(d)) <= 4 then return a; end if; end do; end if; end proc:
    seq(A158304(n),n=1..100) ; # R. J. Mathar, May 23 2010
  • Mathematica
    Select[Range[0,1100],Max[IntegerDigits[#^2]]<5&] (* Harvey P. Dale, Nov 06 2016 *)

Extensions

Extended by several correspondents, May 24 2010

A175471 Numbers n such that n^2 contains no digit less than 5.

Original entry on oeis.org

3, 24, 26, 76, 83, 87, 236, 264, 313, 314, 316, 766, 816, 824, 834, 836, 883, 887, 937, 2366, 2383, 2387, 2424, 2563, 2626, 2976, 3114, 7613, 7666, 8117, 8167, 8184, 8234, 8286, 8366, 8716, 8813, 8814, 8887, 8937, 9266, 9316, 9363, 9417, 9474, 9786, 9833
Offset: 1

Views

Author

Zak Seidov, May 24 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[10000],Min[IntegerDigits[#^2]]>4&] (* Harvey P. Dale, Dec 31 2013 *)
  • PARI
    isok(n) = vecmin(digits(n^2)) > 4; \\ Michel Marcus, Oct 15 2013
Showing 1-3 of 3 results.