cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A277946 Squares whose largest decimal digit is 2.

Original entry on oeis.org

121, 10201, 12100, 22201, 1002001, 1020100, 1022121, 1210000, 1212201, 2220100, 100020001, 100200100, 100220121, 102010000, 102212100, 121000000, 121022001, 121220100, 210221001, 222010000, 10000200001, 10002000100, 10002200121, 10020010000, 10020210201
Offset: 1

Views

Author

Colin Barker, Nov 05 2016

Keywords

Comments

A subsequence of A000290.
From Robert Israel, Nov 14 2016: (Start)
If n is a term, then so is 100*n.
The first term with an even number of digits is a(36) = 100021020121.
The first term with an even number of digits that is not of the form a(36)*100^k has at least 24 digits.
(End)

Crossrefs

Programs

  • Magma
    [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 2]; // Vincenzo Librandi, Nov 06 2016
  • Maple
    res:= NULL: B:= [1,2]:
    for m from 1 to 10 do
      for q in B do
        for x from ceil(sqrt(10^m*q)) to floor(sqrt(10^m*q + 2/9*(10^m-1))) do
          if max(convert(x^2,base,10)) = 2 then res:= res, x^2 fi
      od od:
      for q in B do
         for x from ceil(sqrt(10^(m+1)*q)) to floor(sqrt(10^(m+1)*q + 2/9*(10^(m+1)-1))) do
           if max(convert(x^2,base,10)) = 2 then res:= res, x^2 fi
      od od:
      if m < 10 then B:= map(t -> (10*t,10*t+1,10*t+2),B) fi;
    od:
    res; # Robert Israel, Nov 14 2016
  • Mathematica
    fQ[n_] := Union[ IntegerDigits[ n^2]][[-1]] == 2; Select[ Range@100500, fQ]^2 (* Robert G. Wilson v, Nov 06 2016 *)
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==2, listput(L, n^2))); Vec(L)
    \\ See A277959 for more efficient code. - M. F. Hasler, Nov 16 2017
    

Formula

a(n) = A277959(n)^2. Intersection of A000290 and A277964. - M. F. Hasler, Nov 15 2017

A277961 Numbers n such that 4 is the largest decimal digit of n^2.

Original entry on oeis.org

2, 12, 18, 20, 21, 32, 38, 48, 49, 102, 120, 152, 179, 180, 182, 200, 201, 210, 318, 320, 321, 332, 338, 348, 362, 380, 451, 452, 462, 480, 482, 490, 548, 549, 649, 1002, 1012, 1020, 1021, 1049, 1102, 1111, 1188, 1200, 1201, 1429, 1488, 1498, 1518, 1520
Offset: 1

Views

Author

Colin Barker, Nov 06 2016

Keywords

Comments

The actual squares are listed in A277948. - M. F. Hasler, Nov 12 2017
Includes 2*10^n+10^m for all n <> m. - Robert Israel, Nov 13 2017
For any term of q digits, the first m digits don't exceed (2 * 10^m - 2) / 3 = 666..66 (m 6's) for 1 <= m <= q. - David A. Corneth, Nov 13 2017
A term a(n) is in the sequence if and only if a(n)*10^k is in the sequence, for all k >= 0. If a(n) = (x*10^k + y)*10^m with 2xy < 10^k, then (y*10^k+x)*10^m' is also in the sequence, for all m'. - M. F. Hasler, Nov 13 2017

Crossrefs

Programs

  • Maple
    select(n -> max(convert(n^2,base,10))=4, [$1..10000]); # Robert Israel, Nov 13 2017
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==4, listput(L, n))); Vec(L)

Formula

a(n) = sqrt(A277948(n)), where sqrt = A000196 or A000194 or A003059. - M. F. Hasler, Nov 12 2017

A277947 Squares whose largest decimal digit is 3.

Original entry on oeis.org

12321, 123201, 130321, 1232100, 1320201, 3101121, 12320100, 13032100, 102030201, 102232321, 103002201, 123210000, 123232201, 132020100, 310112100, 1232010000, 1303210000, 1322122321, 1332323001, 2103231321, 10022212321, 10130221201, 10203020100, 10203222121
Offset: 1

Views

Author

Colin Barker, Nov 05 2016

Keywords

Comments

A subsequence of A000290.

Crossrefs

Programs

  • Magma
    [n^2: n in [1..1000000] | Maximum(Intseq(n^2)) eq 3]; // Vincenzo Librandi, Nov 06 2016
  • PARI
    L=List(); for(n=1, 10000, if(vecmax(digits(n^2))==3, listput(L, n^2))); Vec(L)
    

A294663 Cubes whose largest digit is 4.

Original entry on oeis.org

343, 314432, 343000, 34012224, 314432000, 343000000, 34012224000, 314432000000, 343000000000, 442102433032, 30304210142233, 34012224000000, 143121324002112, 314432000000000, 333014302331144, 343000000000000, 442102433032000, 30304210142233000, 34012224000000000
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Comments

For any term a(n), all numbers of the form a(n)*10^3k, k >= 0, are in this sequence. Primitive terms, i.e., not of this form (or equivalently: without trailing '0'), are 343, 314432, 34012224, 442102433032, 30304210142233, 143121324002112, 333014302331144, ...

Examples

			343 is in the sequence because it is a cube, 343 = 7^3, and its largest digit is 4.
		

Crossrefs

Cf. A294664 (the corresponding cubic roots).
Cf. A277948 = A277961^2 (analog for squares).
Cf. A278936, A295025, A295021, ..., A295024 (analog for digits 3, 5, 6, ..., 9).
Cf. A000578 (the cubes).

Programs

  • PARI
    for(n=1,2e8, vecmax(digits(n^3))==4&&print1(n^3,","))

Formula

a(n) = A294664(n)^3.

A295015 Squares whose largest digit is 5.

Original entry on oeis.org

25, 225, 1225, 1521, 2025, 2500, 3025, 4225, 5041, 11025, 12544, 13225, 21025, 22500, 24025, 34225, 35344, 42025, 44521, 52441, 55225, 112225, 122500, 133225, 135424, 150544, 151321, 152100, 202500, 212521, 235225, 245025, 250000, 251001, 252004, 255025, 302500
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295015 (square roots of the terms); A277946, A277947, A277948, A295016 .. A295019 (analog for digits 2 through 9); A295025 (analog for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[600]^2,Max[IntegerDigits[#]]==5&] (* Harvey P. Dale, Aug 19 2022 *)
  • PARI
    is_A295015(n)=issquare(n)&&n&&vecmax(digits(n))==5 \\ The "n&&" avoids an error message for n = 0.
    
  • Python
    from math import isqrt
    def aupto(limit):
      alst, rootlimit = [], isqrt(limit)
      for k in range(1, rootlimit+1):
        if max(str(k*k)) == "5": alst.append(k*k)
      return alst
    print(aupto(302500)) # Michael S. Branicky, May 15 2021

Formula

a(n) = A295005(n)^2.

A295019 Squares whose largest digit is 9.

Original entry on oeis.org

9, 49, 169, 196, 289, 529, 729, 900, 961, 1089, 1296, 1369, 1849, 1936, 2209, 2809, 2916, 3249, 3969, 4096, 4489, 4900, 5329, 5929, 6889, 7396, 7569, 7921, 8649, 9025, 9216, 9409, 9604, 9801, 10609, 11449, 12769, 12996, 13689, 13924, 15129, 16129, 16900, 17689, 17956, 18496, 18769
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295009 (square roots of the terms), A277946 - A277948 (same for digit 2..4), A295015 - A295018 (same for digit 5..8).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[150]^2,Max[IntegerDigits[#]]==9&] (* Harvey P. Dale, Oct 27 2019 *)
  • PARI
    is_A295019(n)=issquare(n)&&n&&vecmax(digits(n))==9 \\ "&&n" avoids an error message for n=0.

Formula

a(n) = A295009(n)^2.

A295016 Squares whose largest digit is 6.

Original entry on oeis.org

16, 36, 64, 256, 361, 625, 1156, 1600, 2116, 2601, 3136, 3364, 3600, 4356, 4624, 5625, 6241, 6400, 6561, 11236, 11664, 13456, 14161, 14641, 15625, 16641, 20164, 21316, 24336, 25600, 26244, 30625, 36100, 41616, 42436, 43264, 46225, 46656, 50625, 53361, 56644, 60025, 60516, 61504
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295006 (square roots of the terms); A277946, A277947, A277948, A295015 .. A295019 (analog for digits 2 through 9), A295021 (analog for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[250]^2,Max[IntegerDigits[#]]==6&] (* Harvey P. Dale, Jun 14 2025 *)
  • PARI
    is_A295016(n)=issquare(n)&&n&&vecmax(digits(n))==6 \\ The "n&&" avoids an error message for n = 0.

Formula

a(n) = A295006(n)^2.

A295018 Squares whose largest digit is 8.

Original entry on oeis.org

81, 484, 784, 841, 1681, 3481, 3844, 5184, 6084, 8100, 8281, 8464, 8836, 10816, 11881, 14884, 15876, 16384, 18225, 22801, 25281, 28224, 28561, 31684, 33856, 36481, 36864, 38025, 38416, 40804, 43681, 48400, 48841, 53824, 58081, 58564, 67081, 68121, 68644, 71824, 77284, 77841, 78400
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295008 (square roots of the terms), A277946 - A277948 (same for digit 2..4), A295015 - A295019 (same for digit 5..9).
Cf. A000290 (the squares).

Programs

  • Maple
    Res:= NULL: count:= 0:
    for n from 1 while count < 50 do
      if max(convert(n^2,base,10))=8 then
        count:= count+1; Res:= Res, n^2;
      fi
    od:
    Res; # Robert Israel, Jul 21 2019
  • Mathematica
    Select[Range[300]^2,Max[IntegerDigits[#]]==8&] (* Harvey P. Dale, Jul 08 2020 *)
  • PARI
    is_A295018(n)=issquare(n)&&n&&vecmax(digits(n))==8 \\ "&&n" avoids an error message for n=0.

Formula

a(n) = A295008(n)^2.

A295017 Squares whose largest digit is 7.

Original entry on oeis.org

576, 676, 1764, 2704, 3721, 4761, 5476, 5776, 6724, 7056, 7225, 7744, 15376, 17161, 17424, 20736, 23716, 27225, 27556, 30276, 32761, 35721, 37636, 47524, 50176, 51076, 54756, 57121, 57600, 67600, 70225, 70756, 72361, 73441, 75076, 75625, 76176, 101761, 106276, 126736, 137641, 141376
Offset: 1

Views

Author

M. F. Hasler, Nov 12 2017

Keywords

Crossrefs

Cf. A295007 (square roots of the terms), A277946 .. A277948 (same for digit 2 .. 4), A295015 .. A295019 (same for digit 5 .. 9), A295022 (same for cubes).
Cf. A000290 (the squares).

Programs

  • Mathematica
    Select[Range[1000]^2,Max[IntegerDigits[#]]==7&] (* Harvey P. Dale, Dec 15 2024 *)
  • PARI
    is_A295017(n)=issquare(n)&&n&&vecmax(digits(n))==7 \\ The "n&&" avoids an error message for n=0.

Formula

a(n) = A295007(n)^2.
Showing 1-9 of 9 results.