Original entry on oeis.org
1, 1, 2, 1, 4, 2, 1, 6, 6, 8, 1, 8, 12, 32, 8, 1, 10, 20, 80, 40, 32, 1, 12, 30, 160, 120, 192, 32, 1, 14, 42, 280, 280, 672, 224, 128, 1, 16, 56, 448, 560, 1792, 896, 1024, 128, 1, 18, 72, 672, 1008, 4032, 2688, 4608, 1152, 512
Offset: 0
First few rows of the triangle =
1;
1, 2;
1, 4, 2;
1, 6, 6, 8;
1, 8, 12, 32, 8;
1, 10, 20, 80, 40, 32;
1, 12, 30, 160, 120, 192, 32;
1, 14, 42, 280, 280, 672, 224, 128;
1, 16, 56, 448, 560, 1792, 896, 1024, 128;
1, 18, 72, 672, 1008, 4032, 2688, 4608, 1152, 512;
1, 20, 90, 960, 1680, 8064, 6720, 15360, 5760, 5120, 512;
...
A158302
"1" followed by repeats of 2^k deleting all 4^k, k>0.
Original entry on oeis.org
1, 2, 2, 8, 8, 32, 32, 128, 128, 512, 512, 2048, 2048, 8192, 8192, 32768, 32768, 131072, 131072, 524288, 524288, 2097152, 2097152, 8388608, 8388608, 33554432, 33554432, 134217728, 134217728, 536870912, 536870912, 2147483648, 2147483648, 8589934592
Offset: 0
Given "1" followed by repeats of powers of 2: (1, 2, 2, 4, 4, 8, 8, 16, 16,...);
delete powers of 4: (4, 16, 64, 156,...) leaving A158300:
(1, 2, 2, 8, 8, 32, 32, 128, 128,...).
-
1,seq(4^floor((n+1)/2)/2, n=1..33); # Peter Luschny, Jul 02 2020
-
Join[{1}, Flatten[Table[{2^n, 2^n}, {n, 1, 41, 2}]]] (* Harvey P. Dale, Jan 24 2013 *)
Join[{1}, Table[2^(2 Ceiling[n/2] - 1), {n, 20}]] (* Eric W. Weisstein, Jun 27 2017 *)
Join[{1}, 2^(2 Ceiling[Range[20]/2] - 1)] (* Eric W. Weisstein, Jun 27 2017 *)
A158301
Denominator of Bernoulli(n, -5/6).
Original entry on oeis.org
1, 3, 36, 27, 6480, 972, 326592, 34992, 8398080, 1259712, 665127936, 45349632, 990435962880, 1632586752, 78364164096, 58773123072, 239794342133760, 2115832430592, 13507474236899328, 76169967501312, 201088714203463680
Offset: 0
-
Table[Denominator[BernoulliB[n, -5/6]], {n, 0, 50}] (* Vincenzo Librandi, Mar 19 2014 *)
Showing 1-3 of 3 results.
Comments