cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122983 a(n) = (2 + (-1)^n + 3^n)/4.

Original entry on oeis.org

1, 1, 3, 7, 21, 61, 183, 547, 1641, 4921, 14763, 44287, 132861, 398581, 1195743, 3587227, 10761681, 32285041, 96855123, 290565367, 871696101, 2615088301, 7845264903, 23535794707, 70607384121, 211822152361, 635466457083
Offset: 0

Views

Author

Paul Barry, Sep 22 2006

Keywords

Comments

Old definition was: "Binomial transform of aeration of A081294".
Binomial transform is A063376.
A122983 = (1,1,3,7,1,1,3,7,...) mod 10. - M. F. Hasler, Feb 25 2008
Equals row sums of triangle A158301. - Gary W. Adamson, Mar 15 2009
a(n) = the number of ternary sequences of length n where the numbers of (0's, 1's) are both even. A015518 covers the (odd, even) and (even, odd) cases, and A081251 covers (odd, odd). - Toby Gottfried, Apr 18 2010
This sequence also describes the number of moves of the k-th disk solving (non-optimally) the [RED ; NEUTRAL ; BLUE] pre-colored Magnetic Tower of Hanoi (MToH) puzzle. The sequence A183119 is the partial sums of the sequence in question (obviously describing the total number of moves associated with the specific solution algorithm). For other MToH-related sequences, Cf. A183111 - A183125.
Let B=[1,sqrt(2),0; sqrt(2),1,sqrt(2); 0,sqrt(2),1] be a 3 X 3 matrix. Then a(n)=[B^n](1,1), n=0,1,2,.... - _L. Edson Jeffery, Dec 21 2011
Also the domination number of the n-Hanoi graph. - Eric W. Weisstein, Jun 16 2017
Also the matching number of the n-Sierpinski gasket graph. - Eric W. Weisstein, Jun 17 2017
Let M = [1,1,1,0; 1,1,0,1; 1,0,1,1; 0,1,1,1], a 4 X 4 matrix. Then a(n) is the upper left entry in M^n. - Philippe Deléham, Aug 23 2020
Also the lower matching number (=independent domination number) of the n-Hanoi graph. - Eric W. Weisstein, Aug 01 2023

Crossrefs

Cf. a(j+1) = A137822(2^j) and these are the record values of A137822.
Cf. A054879 (bisection), A066443 (bisection). Row sums of A158303.

Programs

Formula

From Paul Barry, Jun 14 2007: (Start)
G.f.: (1-2*x-x^2)/((1-x)*(1+x)*(1-3*x));
a(n) = 3^n/4+(-1)^n/4+1/2;
E.g.f.: cosh(x)^2*exp(x). (End)
a(n) = 3*a(n-1) + a(n-2) - 3*a(n-3); a(0)=1, a(1)=1, a(2)=3. - Harvey P. Dale, Sep 03 2013
E.g.f.: Q(0)/2, where Q(k) = 1 + 3^k/( 2 - 2*(-1)^k/( 3^k + (-1)^k - 2*x*3^k/( 2*x + (k+1)*(-1)^k/Q(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Dec 22 2013
a(2*n) = 3*a(2*n-1); a(2*n+1) = 3*a(2*n) - 2. - Philippe Deléham, Aug 23 2020

Extensions

Extended and corrected (existing Maple code) by M. F. Hasler, Feb 25 2008
Description changed to formula by Eric W. Weisstein, Jun 16 2017

A158302 "1" followed by repeats of 2^k deleting all 4^k, k>0.

Original entry on oeis.org

1, 2, 2, 8, 8, 32, 32, 128, 128, 512, 512, 2048, 2048, 8192, 8192, 32768, 32768, 131072, 131072, 524288, 524288, 2097152, 2097152, 8388608, 8388608, 33554432, 33554432, 134217728, 134217728, 536870912, 536870912, 2147483648, 2147483648, 8589934592
Offset: 0

Views

Author

Gary W. Adamson, Mar 15 2009

Keywords

Comments

Binomial transform = A122983: (1, 3, 7, 21, 61, 183,...). Equals right border of triangle A158301.
Also the order of the graph automorphism group of the n+1 X n+1 black bishop graph. - Eric W. Weisstein, Jun 27 2017
For n > 1, also the order of the graph automorphism group of the n X n white bishop graph. - Eric W. Weisstein, Jun 27 2017

Examples

			Given "1" followed by repeats of powers of 2: (1, 2, 2, 4, 4, 8, 8, 16, 16,...);
delete powers of 4: (4, 16, 64, 156,...) leaving A158300:
(1, 2, 2, 8, 8, 32, 32, 128, 128,...).
		

Crossrefs

Programs

  • Maple
    1,seq(4^floor((n+1)/2)/2, n=1..33); # Peter Luschny, Jul 02 2020
  • Mathematica
    Join[{1}, Flatten[Table[{2^n, 2^n}, {n, 1, 41, 2}]]] (* Harvey P. Dale, Jan 24 2013 *)
    Join[{1}, Table[2^(2 Ceiling[n/2] - 1), {n, 20}]] (* Eric W. Weisstein, Jun 27 2017 *)
    Join[{1}, 2^(2 Ceiling[Range[20]/2] - 1)] (* Eric W. Weisstein, Jun 27 2017 *)

Formula

1 followed by repeats of powers of 2, deleting powers of 4: (4, 16, 64,...). Inverse binomial transform of A122983 starting (1, 3, 7, 21, 61, 183,...).
For n > 3: a(n) = a(n-1)*a(n-2)/a(n-3). [Reinhard Zumkeller, Mar 06 2011]
For n > 3: a(n) = 4a(n-2). [Charles R Greathouse IV, Feb 06 2011]
a(n) = Sum_{k, 0<=k<=n} A154388(n,k)*2^k. - Philippe Deléham, Dec 17 2011
G.f.: (1+2*x-2*x^2)/(1-4*x^2). - Philippe Deléham, Dec 17 2011

Extensions

More terms from Harvey P. Dale, Jan 24 2013

A158300 Numerator of Bernoulli(n, -5/6).

Original entry on oeis.org

1, -4, 61, -55, 14909, -2365, 791251, -81235, 18611189, -2688697, 1314206255, -75360175, 1474324903679, -3120712309, 148245882757, 73095622325, -601280097848267, -37106070169201, 382216911865193617, 10910986778031065, -53074470254129087681, -4201158650597043373
Offset: 0

Views

Author

N. J. A. Sloane, Nov 08 2009

Keywords

Crossrefs

For denominators see A158301.

Programs

  • Mathematica
    Table[Numerator[BernoulliB[n, -5/6]], {n, 0, 50}] (* Vincenzo Librandi, Mar 16 2014 *)
Showing 1-3 of 3 results.