cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A098502 a(n) = 16*n - 4.

Original entry on oeis.org

12, 28, 44, 60, 76, 92, 108, 124, 140, 156, 172, 188, 204, 220, 236, 252, 268, 284, 300, 316, 332, 348, 364, 380, 396, 412, 428, 444, 460, 476, 492, 508, 524, 540, 556, 572, 588, 604, 620, 636, 652, 668, 684, 700, 716, 732, 748, 764, 780, 796, 812, 828, 844
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2004

Keywords

Comments

For n > 3, the number of squares on the infinite 4-column chessboard at <= n knight moves from any fixed start point.

Crossrefs

Programs

Formula

G.f.: 4*x*(3+x)/(1-x)^2. - Colin Barker, Jan 09 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3 - 2*sqrt(2)))/(16*sqrt(2)). - Amiram Eldar, Sep 01 2024
From Elmo R. Oliveira, Apr 03 2025: (Start)
E.g.f.: 4*(exp(x)*(4*x - 1) + 1).
a(n) = 2*a(n-1) - a(n-2) for n > 2.
a(n) = 4*A004767(n-1) = 2*A017137(n-1) = A017113(2*n-1). (End)

A103747 Trajectory of 2 under repeated application of the map n -> A102370(n).

Original entry on oeis.org

2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 254, 258, 262, 266, 270, 274, 278, 282, 286, 290, 294, 298, 302, 306, 310, 314, 382, 386, 390, 394, 398, 402, 406, 410, 414, 418, 422
Offset: 1

Views

Author

Benoit Cloitre and David Applegate, Mar 25 2005

Keywords

Comments

Although it initially appears that a(n)-8n is the 16-periodic sequence {-2,-6,-10,-14,-18,-22,-26,-30,-34,-38,-42,-46,-50,-54,6,2}, this pattern eventually breaks down. However, the first divergence occurs beyond the first 400 million terms.
(a(n)) agrees with the 16-periodic sequence up to a(2^67-1) = 2^70 - 70, but then diverges with a(2^67) = 2^71 - 2. - Charlie Neder, Feb 07 2019

Crossrefs

Trajectories of other numbers: A103192 (1), A103621 (7), A158953 (12), A159887 (29).

Programs

  • Haskell
    a103747 n = a103747_list !! (n-1)
    a103747_list = iterate (fromInteger . a102370) 2
    -- Reinhard Zumkeller, Jul 21 2012

Extensions

Edited by Peter Munn, Jan 13 2024

A103621 Trajectory of 7 under repeated application of the map n -> A102370(n).

Original entry on oeis.org

7, 9, 11, 13, 23, 25, 27, 61, 71, 73, 75, 77, 87, 89, 91, 125, 135, 137, 139, 141, 151, 153, 155, 189, 199, 201, 203, 205, 215, 217, 219, 253, 263, 265, 267, 269, 279, 281, 283, 317, 327, 329, 331, 333, 343, 345, 347, 381, 391, 393, 395, 397, 407, 409, 411, 445
Offset: 1

Views

Author

Philippe Deléham, Mar 31 2005

Keywords

Comments

Initially, first differences are 8-periodic: 2,2,2,10,2,2,34,10. [Unsigned comment made accurate by Peter Munn, Jan 13 2024]

Crossrefs

Cf. A102370.
Trajectories of other numbers A103192 (1), A103747 (2), A158953 (12), A159887 (29).

Programs

  • Mathematica
    f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[ Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s + n]; NestList[f, 7, 55] (* Robert G. Wilson v, Mar 30 2005 *)

Formula

Conjectures from Chai Wah Wu, Feb 01 2018: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9.
G.f.: x*(3*x^8 + 34*x^7 + 2*x^6 + 2*x^5 + 10*x^4 + 2*x^3 + 2*x^2 + 2*x + 7)/(x^9 - x^8 - x + 1). (End)
The above conjectures are incompatible with A102370(2^37-37) = 2^38-3. - Peter Munn, Jan 13 2024

Extensions

More terms from Robert G. Wilson v, Mar 30 2005

A159887 Trajectory of 29 under repeated application of the map n -> A102370(n).

Original entry on oeis.org

29, 39, 41, 43, 45, 55, 57, 59, 93, 103, 105, 107, 109, 119, 121, 251, 285, 295, 297, 299, 301, 311, 313, 315, 349, 359, 361, 363, 365, 375, 377, 507, 541, 551, 553, 555, 557, 567, 569, 571, 605, 615, 617, 619, 621, 631, 633, 763, 797, 807, 809, 811, 813, 823, 825
Offset: 1

Views

Author

Philippe Deléham, Apr 25 2009

Keywords

Comments

Not the same as A159888: see the comments in A159888.
The divergence from A159888 follows from Theorem 3.1 in the Applegate, Cloitre, Deléham and Sloane link: in general, the first differences of an A102370 trajectory cannot be a cycle. - Peter Munn, Jan 14 2024

Crossrefs

Trajectories of other numbers: A103192 (1), A103747 (2), A103621 (7), A158953 (12).

Extensions

Missing term 617 inserted by Georg Fischer, Nov 28 2023
Showing 1-4 of 4 results.