cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A107711 Triangle read by rows: T(0,0)=1, T(n,m) = binomial(n,m) * gcd(n,m)/n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 10, 5, 1, 1, 1, 1, 3, 5, 5, 3, 1, 1, 1, 1, 7, 7, 35, 7, 7, 1, 1, 1, 1, 4, 28, 14, 14, 28, 4, 1, 1, 1, 1, 9, 12, 42, 126, 42, 12, 9, 1, 1, 1, 1, 5, 15, 30, 42, 42, 30, 15, 5, 1, 1, 1, 1, 11, 55, 165, 66, 462, 66, 165, 55, 11, 1, 1
Offset: 0

Views

Author

Leroy Quet, Jun 10 2005

Keywords

Comments

T(0,0) is an indeterminate, but 1 seems a logical value to assign it. T(n,0) = T(n,1) = T(n,n-1) = T(n,n) = 1.
T(2n,n) = A001700(n-1) (n>=1). - Emeric Deutsch, Jun 13 2005

Examples

			T(6,2)=5 because binomial(6,2)*gcd(6,2)/6 = 15*2/6 = 5.
The triangle T(n,m) begins:
n\m 0  1  2   3   4    5   6   7  8  9  10...
0:  1
1:  1  1
2:  1  1  1
3:  1  1  1   1
4:  1  1  3   1   1
5:  1  1  2   2   1    1
6:  1  1  5  10   5    1   1
7:  1  1  3   5   5    3   1   1
8:  1  1  7   7  35    7   7   1  1
9:  1  1  4  28  14   14  28   4  1  1
10: 1  1  9  12  42  126  42  12  9  1   1
n\m 0  1  2   3   4    5   6   7  8  9  10...
... reformatted - _Wolfdieter Lang_, Feb 23 2014
		

Crossrefs

Programs

  • Haskell
    a107711 n k = a107711_tabl !! n !! k
    a107711_row n = a107711_tabl !! n
    a107711_tabl = [1] : zipWith (map . flip div) [1..]
                   (tail $ zipWith (zipWith (*)) a007318_tabl a109004_tabl)
    -- Reinhard Zumkeller, Feb 28 2014
  • Maple
    a:=proc(n,k) if n=0 and k=0 then 1 elif k<=n then binomial(n,k)*gcd(n,k)/n else 0 fi end: for n from 0 to 13 do seq(a(n,k),k=0..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jun 13 2005
  • Mathematica
    T[0, 0] = 1; T[n_, m_] := Binomial[n, m] * GCD[n, m]/n;
    Table[T[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Nov 16 2017 *)

Formula

From Wolfdieter Lang, Feb 28 2014 (Start)
T(n, m) = T(n-1,m)*(n-1)*gcd(n,m)/((n-m)*gcd(n-1,m)), n > m >= 1, T(n, 0) = 1, T(n, n) = 1, otherwise 0.
T(n, m) = binomial(n-1,m-1)*gcd(n,m)/m for n >= m >= 1, T(n,0) = 1, otherwise 0 (from iteration of the preceding recurrence).
T(n, m) = T(n-1, m-1)*(n-1)*gcd(n,m)/(m*gcd(n-1,m-1)) for n >= m >= 2, T(n, 0) = 1, T(n, 1) = 0, otherwise 0 (from the preceding formula).
T(2*n, n) = A001700(n-1) (n>=1) (see the Emeric Deutsch comment above), T(2*n, n-1) = A234040(n), T(2*n+1,n) = A000108(n), n >= 0 (Catalan numbers).
Column sequences: T(n+2, 2) = A026741(n+1), T(n+3, 3) = A234041(n), T(n+4, 4) = A208950(n+2), T(n+5, 5) = A234042, n >= 0. (End)

Extensions

More terms from Emeric Deutsch, Jun 13 2005

A159553 a(n) = Sum_{k=0..n} binomial(n,k) * gcd(n,k).

Original entry on oeis.org

2, 6, 12, 28, 40, 144, 140, 536, 864, 2560, 2068, 12720, 8216, 45192, 78660, 182832, 131104, 933984, 524324, 3698240, 4890648, 13345816, 8388652, 67390464, 60129600, 225470544, 279938160, 1032462256, 536870968, 5018059200
Offset: 1

Views

Author

Leroy Quet, Apr 14 2009

Keywords

Comments

For the purpose of this sequence, gcd(n,0) = n, for all positive integers n.
a(n) is a multiple of n, for all nonnegative integers n.

Crossrefs

Programs

  • Maple
    A159553 := proc(n) add(binomial(n, k)*gcd(k, n), k=0..n) ; end: seq(A159553(n),n=1..40) ; # R. J. Mathar, Apr 29 2009
  • Mathematica
    Table[Sum[Binomial[n, k] GCD[n, k], {k, 0, n}], {n, 30}] (* Michael De Vlieger, Oct 30 2017 *)

Formula

a(n) = A159068(n) + n.
a(n) = 2^n * Sum_{d|n} (phi(d)/d) * Sum_{k=1..d} (-1)^(k*n/d)*cos(k*Pi/d)^n.

Extensions

Extended by R. J. Mathar, Apr 29 2009
Ambiguous term a(0) removed by Max Alekseyev, Jan 09 2015

A159555 Numbers m where m^2 divides A159553(m), where A159553(m) = Sum_{k=0..m} binomial(m,k) * gcd(m,k).

Original entry on oeis.org

1, 6, 22, 72, 114, 148, 164, 260, 261, 780, 1078, 1184, 1266, 2952, 4674, 21868
Offset: 1

Views

Author

Leroy Quet, Apr 15 2009

Keywords

Comments

For the purpose of this sequence, gcd(m,0) = m.
No other term up to 15000. - Michel Marcus, Sep 06 2019

Crossrefs

Programs

  • Maple
    A159068 := proc(n) option remember; add(binomial(n, k)*gcd(k, n), k=1..n) ; end: A159553 := proc(n) option remember ; A159068(n)+n; end: isA159555 := proc(n) if A159553(n) mod ( n^2) = 0 then true; else false; fi; end: for n from 1 do if isA159555(n) then printf("%d,\n",n) ; fi; od: # R. J. Mathar, Apr 29 2009
  • PARI
    f(n) = sum(k=0, n, binomial(n,k) * gcd(n,k)); \\ A159553
    isok(n) = !(f(n) % n^2); \\ Michel Marcus, Sep 05 2019

Extensions

Extended by R. J. Mathar, Apr 29 2009
a(14)-a(15) from Ray Chandler, Jun 18 2009
a(16) from Jinyuan Wang, Jul 25 2022
Showing 1-3 of 3 results.