cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159693 Partial sums of A000463.

Original entry on oeis.org

1, 2, 4, 8, 11, 20, 24, 40, 45, 70, 76, 112, 119, 168, 176, 240, 249, 330, 340, 440, 451, 572, 584, 728, 741, 910, 924, 1120, 1135, 1360, 1376, 1632, 1649, 1938, 1956, 2280, 2299, 2660, 2680, 3080, 3101, 3542, 3564, 4048, 4071, 4600, 4624, 5200, 5225, 5850
Offset: 1

Views

Author

Gerald Hillier, Apr 20 2009

Keywords

Comments

Sum of integers followed by squares.

Examples

			For n=9, a(n) = 1+1+2+4+3+9+4+16+5 = 45.
		

Crossrefs

Programs

  • Haskell
    a159693 n = a159693_list !! (n-1)
    a159693_list = scanl1 (+) a000463_list -- Reinhard Zumkeller, Nov 08 2015
  • Magma
    S:=&cat[ [ n, n^2 ]: n in [1..25] ]; [ n eq 1 select S[1] else Self(n-1)+S[n]: n in [1..#S] ]; // Klaus Brockhaus, Apr 20 2009
    
  • Maple
    seq((2*n^3+9*n^2+19*n+9+3*(n^2-n-3)*(-1)^n)/48, n=1..100); # Robert Israel, Dec 30 2014
  • Mathematica
    CoefficientList[Series[x*(1+x-x^2+x^3)/((1+x)^3*(x-1)^4), {x, 0, 50}], x] (* or *) Table[(2*n^3+9*n^2+19*n+9+3*(n^2-n-3)*(-1)^n)/48, {n,0,50}] (* G. C. Greubel, Jun 02 2018 *)
    Accumulate[Flatten[{#,#^2}&/@Range[30]]] (* Harvey P. Dale, Nov 30 2019 *)

Formula

a(n) = (n^3+3*n^2+8*n+r(n))/24, where r(n) = 3*n+9 if n is odd, 3*n^2 if n is even.
G.f.: x*(1+x-x^2+x^3)/((1+x)^3*(x-1)^4). - R. J. Mathar, Apr 20 2009
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7). - R. J. Mathar, Apr 20 2009
a(n) = (2*n^3+9*n^2+19*n+9+3*(n^2-n-3)*(-1)^n)/48. - Luce ETIENNE, Dec 29 2014
E.g.f.: (2*x^3+15*x^2+30*x+9)*exp(x)/48 +(x^2-3)*exp(-x)/16. - Robert Israel, Dec 30 2014

Extensions

More terms from R. J. Mathar and Klaus Brockhaus, Apr 20 2009