cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159883 Numerator of Hermite(n, 14/23).

Original entry on oeis.org

1, 28, -274, -66920, -1004084, 255091088, 12454154824, -1270601891552, -127812323590000, 7175629349576128, 1417946567012111584, -36215654642176309888, -17516100476867891291456, -30656862015230525822720, 240058053822414522099649664, 7175714947197201167276319232
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2009

Keywords

Examples

			Numerators of 1, 28/23, -274/529, -66920/12167, -1004084/279841, ...
		

Crossrefs

Cf. A009967 (denominators).

Programs

  • GAP
    List(List([0..20],n->Sum([0..Int(n/2)],k->(-1)^k*Factorial(n)*(28/23)^(n-2*k)/(Factorial(k)*Factorial(n-2*k)))),NumeratorRat); # Muniru A Asiru, Jul 12 2018
  • Magma
    [Numerator((&+[(-1)^k*Factorial(n)*(28/23)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..20]]; // Vincenzo Librandi, Jun 23 2018
    
  • Mathematica
    Numerator[Table[HermiteH[n, 14/23], {n, 0, 40}]] (* Vincenzo Librandi, Jun 23 2018 *)
    Table[23^n*HermiteH[n, 14/23], {n,0,30}] (* G. C. Greubel, Jul 11 2018 *)
  • PARI
    a(n)=numerator(polhermite(n, 14/23)) \\ Charles R Greathouse IV, Jan 29 2016
    
  • PARI
    x='x+O('x^99); Vec(serlaplace(exp(-529*x^2+28*x))) \\ Altug Alkan, Jul 30 2018
    

Formula

E.g.f.: exp(-529*x^2 + 28*x). - Simon Plouffe, Jun 22 2018; corrected by G. C. Greubel, Jul 11 2018
From G. C. Greubel, Jul 11 2018: (Start)
a(n) = 23^n * Hermite(n, 14/23).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(28/23)^(n-2*k)/(k!*(n-2*k)!)). (End)
D-finite with recurrence a(n) -28*a(n-1) +1058*(n-1)*a(n-2)=0. [DLMF] - R. J. Mathar, Feb 06 2021