cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007438 Moebius transform of triangular numbers.

Original entry on oeis.org

1, 2, 5, 7, 14, 13, 27, 26, 39, 38, 65, 50, 90, 75, 100, 100, 152, 111, 189, 148, 198, 185, 275, 196, 310, 258, 333, 294, 434, 292, 495, 392, 490, 440, 588, 438, 702, 549, 684, 584, 860, 582, 945, 730, 876, 803, 1127, 776, 1197, 910, 1168, 1020, 1430
Offset: 1

Views

Author

Keywords

Comments

a(n)=|{(x,y):1<=x<=y<=n, gcd(x,y,n)=1}|. E.g. a(4)=7 because of the pairs (1,1), (1,2), (1,3), (1,4), (2,3), (3,3), (3,4). - Steve Butler, Apr 18 2006
Partial sums of a(n) give A015631(n). - Steve Butler, Apr 18 2006
Equals row sums of triangle A159905. - Gary W. Adamson, Apr 25 2009; corrected by Mats Granvik, Apr 24 2010

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000217.
Cf. A159905. - Gary W. Adamson, Apr 25 2009

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
           add(mobius(n/d)*d*(d+1)/2, d=divisors(n))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 09 2011
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*d*(d+1)/2, {d, Divisors[n]}]; Array[a, 60] (* Jean-François Alcover, Apr 17 2014 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d*(d+1)/2); \\ Michel Marcus, Nov 05 2018

Formula

a(n) = (A007434(n)+A000010(n))/2, half the sum of the Mobius transforms of n^2 and n. Dirichlet g.f. (zeta(s-2)+zeta(s-1))/(2*zeta(s)). - R. J. Mathar, Feb 09 2011
G.f.: Sum_{n>=1} a(n)*x^n/(1 - x^n) = x/(1 - x)^3. - Ilya Gutkovskiy, Apr 25 2017

A177975 Square array T(n,k) read by antidiagonals up. Each column is the first column in the matrix inverse of a triangular matrix that is the k-th differences of A051731 in the column direction.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 2, 5, 3, 1, 0, 4, 7, 9, 4, 1, 0, 2, 14, 16, 14, 5, 1, 0, 6, 13, 34, 30, 20, 6, 1, 0, 4, 27, 43, 69, 50, 27, 7, 1, 0, 6, 26, 83, 107, 125, 77, 35, 8, 1, 0, 4, 39, 100, 209, 226, 209, 112, 44, 9, 1, 0, 10, 38, 155, 295, 461, 428, 329, 156, 54, 10, 1
Offset: 1

Views

Author

Mats Granvik, May 16 2010

Keywords

Comments

The first column in this array is the first column in A134540 which is the matrix inverse of A177978. The second column is the first column in A159905. The rows in this array are described by both binomial expressions and closed form polynomials.

Examples

			Table begins:
  1..1...1...1....1.....1.....1......1......1.......1.......1
  0..1...2...3....4.....5.....6......7......8.......9......10
  0..2...5...9...14....20....27.....35.....44......54......65
  0..2...7..16...30....50....77....112....156.....210.....275
  0..4..14..34...69...125...209....329....494.....714....1000
  0..2..13..43..107...226...428....749...1234....1938....2927
  0..6..27..83..209...461...923...1715...3002....5004....8007
  0..4..26.100..295...736..1632...3312...6270...11220...19162
  0..6..39.155..480..1266..2975...6399..12825...24255...43692
  0..4..38.182..641..1871..4789..11103..23807...47896...91367
  0.10..65.285.1000..3002..8007..19447..43757...92377..184755
  0..4..50.292.1209..4066.11837..30920..74139..165748..349438
  0.12..90.454.1819..6187.18563..50387.125969..293929..646645
  0..6..75.473.2166..8101.26202..75797.200479..492406.1136048
  0..8.100.636.2976.11482.38523.115915.319231..816421.1960190
  0..8.100.696.3546.14712.52548.167112.483879.1296064.3249312
		

Crossrefs

Column k=1..5 gives A063524, A000010, A007438, A117108, A117109.
Main diagonal gives A332470.

Programs

  • PARI
    T(n, k) = sumdiv(n, d, moebius(n/d)*binomial(d+k-2, d-1)); \\ Seiichi Manyama, Jun 12 2021

Formula

From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{d|n} mu(n/d) * binomial(d+k-2,d-1). (End)
Showing 1-2 of 2 results.