cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A004709 Cubefree numbers: numbers that are not divisible by any cube > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Steven Finch, Jun 14 1998

Keywords

Comments

Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
From Amiram Eldar, Feb 26 2024: (Start)
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)

Crossrefs

Complement of A046099.
Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).
Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - Gerard P. Michon, May 06 2009
Cf. A030078.

Programs

  • Haskell
    a004709 n = a004709_list !! (n-1)
    a004709_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA004709 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) > 2 then
                return false;
            end if;
        end do:
        true ;
    end proc:
  • Mathematica
    Select[Range[6!], FreeQ[FactorInteger[#], {, k /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
  • PARI
    {a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( cvecmax(factor(m)[,2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) == n
    print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A004709(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - Reinhard Zumkeller, Mar 04 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022

A160113 Number of cubefree integers not exceeding 2^n.

Original entry on oeis.org

1, 2, 4, 7, 14, 27, 54, 107, 214, 427, 854, 1706, 3410, 6815, 13629, 27259, 54521, 109042, 218080, 436158, 872318, 1744638, 3489278, 6978546, 13957092, 27914186, 55828364, 111656716, 223313428, 446626866, 893253744, 1786507472, 3573014938, 7146029910, 14292059832
Offset: 0

Views

Author

Gerard P. Michon, May 02 2009

Keywords

Comments

An alternate definition specifying "less than 2^n" would yield the same sequence except for the first 3 terms: 0,1,3,7,14,27,54,107, etc. (since powers of 2 beyond 8 are not cubefree).
The limit of a(n)/2^n is the inverse of Apery's constant, 1/zeta(3) [see A088453].

Examples

			a(0)=1 because there is just one cubefree integer (1) not exceeding 2^0 = 1.
a(3)=7 because 1,2,3,4,5,6,7 are cubefree but 8 is not.
		

Crossrefs

Cf. A004709 (cubefree numbers), A160112 (decimal counterpart for cubefree integers), A143658 (binary counterpart for squarefree integers), A071172 & A053462 (decimal counterpart for squarefree integers).
Cf. A060431.

Programs

  • Haskell
    a160113 = a060431 . (2 ^)  -- Reinhard Zumkeller, Jul 27 2015
    
  • Mathematica
    a[n_] := Sum[ MoebiusMu[i]*Floor[2^n/i^3], {i, 1, 2^(n/3)}]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Dec 20 2011, from formula *)
    Module[{nn=20,mu},mu=Table[If[Max[FactorInteger[n][[All,2]]]<3,1,0],{n,2^nn}];Table[Total[Take[mu,2^k]],{k,0,nn}]] (* The program generates the first 20 terms of the sequence. To get more, increase the value (constant) for nn, but the program may take a long time to run. *) (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    from sympy import mobius, integer_nthroot
    def A160113(n): return sum(mobius(k)*((1<Chai Wah Wu, Aug 06 2024
    
  • Python
    from bitarray import bitarray
    from sympy import integer_nthroot
    def A160113(n): # faster program
        q = 1<Chai Wah Wu, Aug 06 2024

Formula

a(n) = Sum_{i=1..2^(n/3)} A008683(i)*floor(2^n/i^3).

A160115 Fluctuations of the number of cubefree integers not exceeding 2^n.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 0, -1, -1, 1, 2, 0, -1, 0, 2, 6, 1, 2, 7, 5, -1, -7, -4, 4, -7, -21, -7, -2, 30, 2, 14, -8, 7, -1, -7, -12, -1, 21, 28, 7, -29, -33, -76, -88, 15, 47, 58, -51, -112, 293, 122, 316, -96, -42, -259, 140, -111, 6, -790, -342, 146, 395, 1087
Offset: 0

Views

Author

Gerard P. Michon, May 06 2009

Keywords

Comments

The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = 0.83190737258... The number of cubefree integers not exceeding N is thus roughly N/zeta(3). When N is a power of 2, this sequence gives the difference between the actual number (A160113) and that linear estimate (rounded to the nearest integer).

Crossrefs

A004709 (cubefree integers). A160112 & A160113 (counting cubefree integers).

Formula

a(n) = A160113(n)-round(2^n/zeta(3))

A160114 Fluctuations of the number of cubefree integers not exceeding 10^n.

Original entry on oeis.org

0, 1, 2, 1, 0, -1, 3, 7, -10, -1, -7, -14, -59, 21, 34, -15, 103, -104, 302, -38, -514, -290, 1130, 504, 2466, 6813, -1854, 1590, -4879, 3963, -4767, -22709
Offset: 0

Views

Author

Gerard P. Michon, May 06 2009

Keywords

Comments

The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = 0.83190737258... The number of cubefree integers not exceeding N is thus roughly N/zeta(3). When N is a power of 10, this sequence gives the difference between the actual number (A160112) and that linear estimate (rounded to the nearest integer).

Crossrefs

A004709 (cubefree integers). A160112 & A160113 (counting cubefree integers).

Formula

a(n) = A160112(n)-round(10^n/zeta(3))

Extensions

a(30)-a(31) from Chai Wah Wu, Aug 08 2024
Showing 1-4 of 4 results.