cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094390 Beatty sequence of exp(Pi/4).

Original entry on oeis.org

2, 4, 6, 8, 10, 13, 15, 17, 19, 21, 24, 26, 28, 30, 32, 35, 37, 39, 41, 43, 46, 48, 50, 52, 54, 57, 59, 61, 63, 65, 67, 70, 72, 74, 76, 78, 81, 83, 85, 87, 89, 92, 94, 96, 98, 100, 103, 105, 107, 109, 111, 114, 116, 118, 120, 122, 125, 127, 129, 131, 133, 135, 138, 140
Offset: 1

Views

Author

Robert G. Wilson v, Apr 28 2004

Keywords

Comments

Beatty complement is A094391.

Crossrefs

Programs

  • Magma
    R:= RealField(100);
    [Floor(n*Exp(Pi(R)/4)): n in [1..100]]; // G. C. Greubel, Sep 27 2024
    
  • Mathematica
    c = E^(Pi/4); Table[Floor[n*c], {n,65}]
  • SageMath
    [int(n*exp(pi/4)) for n in range(1,101)] # G. C. Greubel, Sep 27 2024

Formula

a(n) = floor(n * exp(Pi/4)).

A320428 Continued fraction expansion of exp(Pi/4).

Original entry on oeis.org

2, 5, 5, 1, 3, 25, 1, 1, 17, 1, 3, 3, 1, 12, 1, 8, 5, 3, 1, 46, 3, 4, 12, 1, 5, 22, 3, 2, 1, 7, 4, 2, 1, 13, 13, 8, 1, 1, 3, 1, 1, 1, 2, 1, 11, 1, 5, 2, 1, 4, 7, 1, 71, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 4, 6, 1, 9, 1, 1, 1, 6, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 2, 1, 2, 10, 1, 19, 2, 2, 4, 1
Offset: 0

Views

Author

Grant T Sanderson, Aug 28 2019

Keywords

Comments

This value arises naturally by taking the ratio of the volume of a unit 2n-dimensional ball to the volume of the 2n-dimensional cube containing it (with side length 2) and summing over all n.

Crossrefs

Cf. A160510 (decimal expansion), A058287, A087299, A329912 (Engel expansion).

Programs

  • Mathematica
    ContinuedFraction[Exp[Pi/4], 100]
  • PARI
    contfrac(exp(Pi/4)) \\ Felix Fröhlich, Aug 28 2019

A329912 Engel expansion of exp(Pi/4).

Original entry on oeis.org

1, 1, 6, 7, 9, 17, 57, 283, 326, 791, 10332, 17303, 24977, 85451, 96025, 192273, 337177, 700071, 1394732, 2514757, 73904827, 176943055, 340834596, 663816066, 833303392, 2045234708, 2352089677, 7248164506, 10106625539, 32495772149, 54837573240, 60139816999
Offset: 1

Views

Author

Alois P. Heinz, Nov 23 2019

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

Crossrefs

Cf. A006784, A160510 (decimal expansion), A320428 (continued fraction).

Programs

  • Maple
    Digits:= 250:
    engel:= (r, n)-> `if`(n=0 or r=0, NULL,
            [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]):
    engel(evalf(exp(Pi/4)), 32);
Showing 1-3 of 3 results.