cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A160791 a(n) = binomial(N, n - N) where N = 1 + floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 6, 4, 10, 5, 15, 6, 21, 7, 28, 8, 36, 9, 45, 10, 55, 11, 66, 12, 78, 13, 91, 14, 105, 15, 120, 16, 136, 17, 153, 18, 171, 19, 190, 20, 210, 21, 231, 22, 253, 23, 276, 24, 300, 25, 325, 26, 351, 27, 378, 28, 406, 29, 435, 30, 465
Offset: 0

Views

Author

Omar E. Pol, May 29 2009

Keywords

Crossrefs

First differences of A160790.

Programs

  • Magma
    [(n^2+6*n+4+(n^2-2*n-4)*(-1)^n)/16: n in [0..70]]; // Vincenzo Librandi, Apr 02 2015
  • Maple
    a := proc(n) 1 + floor(n/2); binomial(%, n - %) end:
    seq(a(n), n = 0..60);  # Peter Luschny, Jul 02 2024
  • Mathematica
    Join[{0}, Riffle[Range[30], Range[30] (Range[30] + 1)/2]] (* Bruno Berselli, Jul 15 2013 *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 1, 2, 3, 3, 6}, 60] (* Vincenzo Librandi, Apr 02 2015 *)
  • PARI
    Vec(x*(1+x-x^2)/(1-x^2)^3 + O(x^80)) \\ Michel Marcus, Apr 01 2015
    

Formula

From R. J. Mathar, Feb 09 2010: (Start)
a(2n+1) = n+1 and a(2n) = A000217(n) with a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(1+x-x^2)/(1-x^2)^3. (End)
a(n) = (n^2+6*n+4+(n^2-2*n-4)*(-1)^n)/16. - Luce ETIENNE, Mar 31 2015
E.g.f.: (x*(x+4)*cosh(x) + (3*x+4)*sinh(x))/8. - G. C. Greubel, Apr 26 2018

Extensions

a(0) = 0 prepended and new name by Peter Luschny, Jul 02 2024