cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A160791 a(n) = binomial(N, n - N) where N = 1 + floor(n/2).

Original entry on oeis.org

0, 1, 1, 2, 3, 3, 6, 4, 10, 5, 15, 6, 21, 7, 28, 8, 36, 9, 45, 10, 55, 11, 66, 12, 78, 13, 91, 14, 105, 15, 120, 16, 136, 17, 153, 18, 171, 19, 190, 20, 210, 21, 231, 22, 253, 23, 276, 24, 300, 25, 325, 26, 351, 27, 378, 28, 406, 29, 435, 30, 465
Offset: 0

Views

Author

Omar E. Pol, May 29 2009

Keywords

Crossrefs

First differences of A160790.

Programs

  • Magma
    [(n^2+6*n+4+(n^2-2*n-4)*(-1)^n)/16: n in [0..70]]; // Vincenzo Librandi, Apr 02 2015
  • Maple
    a := proc(n) 1 + floor(n/2); binomial(%, n - %) end:
    seq(a(n), n = 0..60);  # Peter Luschny, Jul 02 2024
  • Mathematica
    Join[{0}, Riffle[Range[30], Range[30] (Range[30] + 1)/2]] (* Bruno Berselli, Jul 15 2013 *)
    LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 1, 1, 2, 3, 3, 6}, 60] (* Vincenzo Librandi, Apr 02 2015 *)
  • PARI
    Vec(x*(1+x-x^2)/(1-x^2)^3 + O(x^80)) \\ Michel Marcus, Apr 01 2015
    

Formula

From R. J. Mathar, Feb 09 2010: (Start)
a(2n+1) = n+1 and a(2n) = A000217(n) with a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6).
G.f.: x*(1+x-x^2)/(1-x^2)^3. (End)
a(n) = (n^2+6*n+4+(n^2-2*n-4)*(-1)^n)/16. - Luce ETIENNE, Mar 31 2015
E.g.f.: (x*(x+4)*cosh(x) + (3*x+4)*sinh(x))/8. - G. C. Greubel, Apr 26 2018

Extensions

a(0) = 0 prepended and new name by Peter Luschny, Jul 02 2024

A160792 Vertex number of a rectangular spiral related to prime numbers. The distances between nearest edges of the spiral that are parallel to the initial edge are the prime numbers, while the distances between nearest edges perpendicular to the initial edge are all one.

Original entry on oeis.org

0, 1, 3, 5, 10, 13, 23, 27, 44, 49, 77, 83, 124, 131, 189, 197, 274, 283, 383, 393, 522, 533, 693, 705, 902, 915, 1153, 1167, 1448, 1463, 1791, 1807, 2188, 2205, 2645, 2663, 3164, 3183, 3751, 3771, 4410, 4431, 5143, 5165, 5956, 5979, 6853, 6877, 7840, 7865
Offset: 0

Views

Author

Omar E. Pol, May 29 2009

Keywords

Comments

First differences give A160793. - Omar E. Pol, Oct 31 2011

Crossrefs

Programs

  • Maple
    A160792 := proc(n) option remember: if(n<=1)then return n: fi: if(n mod 2 = 0)then return procname(n-1)+add(ithprime(j),j=1..n/2): fi: return procname(n-1)+ceil(n/2): end: seq(A160792(n),n=0..49); # Nathaniel Johnston, Jun 16 2011

Formula

a(2n) = a(2n-1) + Sum_{j=1..n} prime(j); a(2n+1) = a(2n) + n + 1 for n >= 1. - Nathaniel Johnston, Jun 16 2011

Extensions

Terms after a(10) and edited by Nathaniel Johnston, Jun 16 2011

A160795 First differences of A160794.

Original entry on oeis.org

1, 1, 3, 2, 6, 4, 11, 7, 18, 12, 29, 20, 42, 33, 59, 54, 78, 88, 101, 143, 130, 232, 161, 376, 198, 609, 239, 986, 282, 1596, 329, 2583, 382, 4180, 441, 6764, 502, 10945, 569, 17710, 640, 28656, 713, 46367, 792, 75024, 875, 121392, 964, 196417, 1061, 317810, 1162, 514228, 1265, 832039, 1372
Offset: 1

Views

Author

Omar E. Pol, May 29 2009

Keywords

Comments

Length of the n-th edge of a square spiral related to Fibonacci numbers and prime numbers.

Crossrefs

Showing 1-3 of 3 results.