A182383
Primes of the form k^k - k + 1.
Original entry on oeis.org
2, 3, 3121, 302875106592241
Offset: 1
a(2) = 5^5 - 5 + 1 = 3125 - 4 = 3121.
-
Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; Select[Table[n^n - n + 1, {n, 0, 100}], PrimeQ] (* T. D. Noe, Apr 27 2012 *)
A268987
Primes of the form k^(k + 1) + k - 1.
Original entry on oeis.org
83, 15629, 279941, 3486784409, 6568408355712890639
Offset: 1
Cf.
A309140 (the corresponding values of k).
-
[a: n in [0..100] | IsPrime(a) where a is n^(n+1)+n-1]; // Vincenzo Librandi, Feb 17 2016
-
Select[Table[n^(n + 1) + n - 1, {n, 1, 50}], ProvablePrimeQ[#] &]
-
lista(nn) = for(k=1, nn, if(ispseudoprime(q=k^(k+1)+k-1), print1(q, ", "))); \\ Jinyuan Wang, Mar 01 2020
A267014
Primes of the form a^a + a*b + b^b.
Original entry on oeis.org
2, 3, 5, 7, 23, 31, 37, 251, 257, 3119, 3167, 46649, 46663, 49811, 823591, 870241, 16780381, 387420479, 387420499, 285311717333, 11414881932150451, 18446744359021222403, 827240261886336764159, 827240261886336767387, 827240261886337587839, 827240261896336764347
Offset: 1
23 is a term because 3^3 + 3*(-1) + (-1)^(-1) = 23 is prime.
31 is a term because 3^3 + 3*1 + 1^1 = 31 is prime.
37 is a term because 3^3 + 3*2 + 2^2 = 37 is prime.
Showing 1-3 of 3 results.
Comments