cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161701 a(n) = (n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120.

Original entry on oeis.org

1, 2, 3, 4, 6, 12, 28, 64, 135, 262, 473, 804, 1300, 2016, 3018, 4384, 6205, 8586, 11647, 15524, 20370, 26356, 33672, 42528, 53155, 65806, 80757, 98308, 118784, 142536, 169942, 201408, 237369, 278290, 324667, 377028, 435934, 501980, 575796, 658048
Offset: 0

Views

Author

Reinhard Zumkeller, Jun 17 2009

Keywords

Comments

{a(k): 0 <= k < 6} = divisors of 12:
a(n) = A027750(A006218(11) + k + 1), 0 <= k < A000005(12).

Examples

			Differences of divisors of 12 to compute the coefficients of their interpolating polynomial, see formula:
  1     2     3     4     6    12
     1     1     1     2     6
        0     0     1     4
           0     1     3
              1     2
                 1
		

Crossrefs

Programs

  • Magma
    [(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010
    
  • Maple
    A161701:=n->(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: seq(A161701(n), n=0..60); # Wesley Ivan Hurt, Jul 16 2017
  • Mathematica
    CoefficientList[Series[(1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)
  • PARI
    a(n)=(n^5-5*n^4+5*n^3+5*n^2+114*n+120)/120 \\ Charles R Greathouse IV, Sep 24 2015

Formula

a(n) = C(n,0) + C(n,1) + C(n,4) + C(n,5).
G.f.: (1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6. - Colin Barker, Aug 20 2012