A161716 Number of reduced words of length n in the Weyl group B_7.
1, 7, 27, 77, 181, 371, 686, 1170, 1869, 2827, 4082, 5662, 7581, 9835, 12399, 15225, 18242, 21358, 24464, 27440, 30162, 32510, 34376, 35672, 36336, 36336, 35672, 34376, 32510, 30162, 27440, 24464, 21358, 18242, 15225, 12399, 9835, 7581, 5662
Offset: 0
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et algèbres de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..49
Crossrefs
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((&*[1-t^(2*k): k in [1..7]])/(1-t)^7)); // G. C. Greubel, Oct 25 2018 -
Maple
seq(coeff(series(mul((1-x^(2k))/(1-x),k=1..7),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
-
Mathematica
CoefficientList[Series[(1 - x^2) (1 - x^4) (1 - x^6) (1 - x^8) (1 - x^10) (1 - x^12) (1 - x^14) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 22 2016 *)
-
PARI
t='t+O('t^50); Vec(prod(k=1,7,1-t^(2*k))/(1-t)^7) \\ G. C. Greubel, Oct 25 2018
Formula
G.f. for B_m is the polynomial Product_{k=1..m} (1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Comments