cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A161962 Odd numbers k such that phi(k) < phi(k+1).

Original entry on oeis.org

105, 165, 315, 525, 585, 735, 1155, 1365, 1485, 1575, 1755, 1785, 1815, 1995, 2145, 2205, 2415, 2475, 2535, 2805, 2835, 3003, 3045, 3315, 3465, 3675, 3885, 3927, 4095, 4125, 4305, 4455, 4485, 4515, 4725, 4785, 4845, 4935, 5115, 5145
Offset: 1

Views

Author

David Angell (angell(AT)maths.unsw.edu.au), Jun 22 2009

Keywords

Comments

If k is even then for obvious reasons phi(k) will usually be less than phi(k+1). So it is more interesting to see when this occurs for odd k.

Examples

			105 is in the sequence since phi(105)=48 and phi(106)=52.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..5500] | ((n+1) mod 2 eq 0) and (EulerPhi(n) lt EulerPhi(n+1))]; // G. C. Greubel, Feb 27 2019
    
  • Maple
    with(numtheory): a := proc (n) if `mod`(n, 2) = 1 and phi(n) < phi(n+1) then n else end if end proc: seq(a(n), n = 1 .. 6000); # Emeric Deutsch, Jul 11 2009
  • Mathematica
    Select[Range[5500], OddQ[#] && EulerPhi[#] < EulerPhi[# + 1] &] (* G. C. Greubel, Feb 27 2019 *)
    2#-1&/@Flatten[Position[Partition[EulerPhi[Range[5500]],2],?(#[[1]]<#[[2]]&),1,Heads-> False]] (* _Harvey P. Dale, Nov 25 2022 *)
  • PARI
    for(n=1, 5500, if(Mod(n+1,2)==0 && eulerphi(n) < eulerphi(n+1), print1(n", "))) \\ G. C. Greubel, Feb 27 2019
  • Sage
    [n for n in (1..5500) if mod(n+1,2)==0 and euler_phi(n) < euler_phi(n+1)] # G. C. Greubel, Feb 27 2019
    

Formula

a(n) = 2*A001836(n) - 1. - Jon Maiga / Georg Fischer, Jun 23 2021

A076773 2-nadirs of phi: numbers k such that phi(k-2) > phi(k-1) > phi(k) < phi(k+1) < phi(k+2).

Original entry on oeis.org

315, 525, 735, 1155, 1365, 1575, 1755, 1785, 1815, 1995, 2145, 2415, 2475, 2805, 3045, 3315, 3465, 3885, 4095, 4125, 4305, 4515, 4725, 4935, 5115, 5145, 5355, 5775, 6045, 6195, 6405, 6435, 6615, 6825, 7035, 7095, 7245, 7395, 7455, 7605, 7665, 8085
Offset: 1

Views

Author

Joseph L. Pe, Nov 14 2002

Keywords

Comments

I call n a "k-nadir" (or nadir of depth k) of the arithmetical function f if n satisfies f(n-k) > ... > f(n-1) > f(n) < f(n+1) < ... < f(n+k).
If just phi(n-1) > phi(n) < phi(n+1) is required for odd n, does this lead to a different sequence? That is, are there consecutive odd numbers in A161962 or consecutive even numbers in A161963? - Jianing Song, Jan 12 2019

Examples

			phi(313), ..., phi(317) equal 312, 156, 144, 156, 316, respectively, so 315 is a 2-nadir of phi(n).
		

Crossrefs

Programs

  • Magma
    eu:=EulerPhi; f:=func; f1:= func; [k:k in [3..8100]|f(k) and f1(k)]; // Marius A. Burtea, Feb 19 2020
  • Mathematica
    Select[Range[3, 10^4], EulerPhi[#-2] > EulerPhi[#-1] > EulerPhi[#] < EulerPhi[#+1] < EulerPhi[#+2] &]
  • Sage
    [n for n in (3..9000) if euler_phi(n-2) > euler_phi(n-1) > euler_phi(n) < euler_phi(n+1) < euler_phi(n+2)] # G. C. Greubel, Feb 27 2019
    

A326817 Numbers k such that phi(k) > phi(k+1) > phi(k+2) > phi(k+3) where phi is the Euler totient function (A000010).

Original entry on oeis.org

823, 943, 3133, 4387, 4873, 5443, 5563, 5863, 7213, 7753, 7873, 8383, 9007, 10333, 10693, 11113, 11503, 12043, 12763, 13483, 13843, 13921, 14623, 14683, 16573, 16663, 16963, 16993, 17113, 17983, 19003, 19093, 19303, 20083, 20143, 20953, 21613, 21733, 22513
Offset: 1

Views

Author

Kritsada Moomuang, Oct 20 2019

Keywords

Examples

			823 is in the sequence since phi(823) = 822, phi(824) = 408, phi(825) = 400, phi(826) = 348, and 822 > 408 > 400 > 348.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, page 106, entry 823.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[Differences @ EulerPhi[n + Range[0, 3]], # < 0 &]; Select[Range[23000], aQ] (* Amiram Eldar, Oct 20 2019 *)

A328056 Numbers k such that phi(k) > phi(k+1) > phi(k+2) where phi is the Euler totient function (A000010).

Original entry on oeis.org

313, 523, 733, 823, 824, 943, 944, 973, 1153, 1363, 1573, 1753, 1783, 1813, 1993, 2143, 2413, 2473, 2623, 2803, 3043, 3133, 3134, 3253, 3313, 3463, 3703, 3883, 4093, 4123, 4303, 4387, 4388, 4513, 4723, 4873, 4874, 4933, 5113, 5143, 5353, 5443, 5444, 5563, 5564
Offset: 1

Views

Author

Kritsada Moomuang, Oct 03 2019

Keywords

Comments

Contains all members k of A206581 such that k==103 (mod 210) except 103.- Robert Israel, Oct 16 2019

Examples

			313 is in the sequence since phi(313) = 312, phi(314) = 156, phi(315) = 144, and 312 > 156 > 144.
		

Crossrefs

Supersequence of A326817.

Programs

Showing 1-4 of 4 results.