cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A161963 Even numbers n for which phi(n) > phi(n+1).

Original entry on oeis.org

314, 524, 734, 824, 944, 974, 1154, 1364, 1574, 1754, 1784, 1814, 1994, 2144, 2414, 2474, 2624, 2804, 3044, 3134, 3254, 3314, 3464, 3704, 3884, 4094, 4124, 4304, 4388, 4514, 4724, 4874, 4934, 5114, 5144, 5354, 5444, 5564, 5774, 5864
Offset: 1

Views

Author

David Angell (angell(AT)maths.unsw.edu.au), Jun 22 2009

Keywords

Comments

If n is even then for obvious reasons phi(n) will usually be less than or equal to phi(n+1). These are the first few exceptions.
Observation based upon calculation: More than 95% of the terms of this sequence have the final digit of 4 for n <= 10^7.. - Harvey P. Dale, Jul 24 2012

Examples

			314 is in the list because phi(314)=156 and phi(315)=144.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..6000] | (n mod 2 eq 0) and (EulerPhi(n) gt EulerPhi(n+1))]; // G. C. Greubel, Feb 27 2019
    
  • Mathematica
    Select[2*Range[3000],EulerPhi[#]>EulerPhi[#+1]&] (* Harvey P. Dale, Jul 24 2012 *)
  • PARI
    for(n=1, 6000, if(Mod(n,2)==0 && eulerphi(n) > eulerphi(n+1), print1(n", "))) \\ G. C. Greubel, Feb 27 2019
    
  • Sage
    [n for n in (1..6000) if mod(n,2)==0 and euler_phi(n) > euler_phi(n+1)] # G. C. Greubel, Feb 27 2019

Formula

a(n) = 2 * A001837(n) (follows from the definition). - Chris Boyd, Mar 15 2014

A076773 2-nadirs of phi: numbers k such that phi(k-2) > phi(k-1) > phi(k) < phi(k+1) < phi(k+2).

Original entry on oeis.org

315, 525, 735, 1155, 1365, 1575, 1755, 1785, 1815, 1995, 2145, 2415, 2475, 2805, 3045, 3315, 3465, 3885, 4095, 4125, 4305, 4515, 4725, 4935, 5115, 5145, 5355, 5775, 6045, 6195, 6405, 6435, 6615, 6825, 7035, 7095, 7245, 7395, 7455, 7605, 7665, 8085
Offset: 1

Views

Author

Joseph L. Pe, Nov 14 2002

Keywords

Comments

I call n a "k-nadir" (or nadir of depth k) of the arithmetical function f if n satisfies f(n-k) > ... > f(n-1) > f(n) < f(n+1) < ... < f(n+k).
If just phi(n-1) > phi(n) < phi(n+1) is required for odd n, does this lead to a different sequence? That is, are there consecutive odd numbers in A161962 or consecutive even numbers in A161963? - Jianing Song, Jan 12 2019

Examples

			phi(313), ..., phi(317) equal 312, 156, 144, 156, 316, respectively, so 315 is a 2-nadir of phi(n).
		

Crossrefs

Programs

  • Magma
    eu:=EulerPhi; f:=func; f1:= func; [k:k in [3..8100]|f(k) and f1(k)]; // Marius A. Burtea, Feb 19 2020
  • Mathematica
    Select[Range[3, 10^4], EulerPhi[#-2] > EulerPhi[#-1] > EulerPhi[#] < EulerPhi[#+1] < EulerPhi[#+2] &]
  • Sage
    [n for n in (3..9000) if euler_phi(n-2) > euler_phi(n-1) > euler_phi(n) < euler_phi(n+1) < euler_phi(n+2)] # G. C. Greubel, Feb 27 2019
    

A327880 Numbers k such that phi(k) < phi(k+1) < phi(k+2) < phi(k+3) where phi is the Euler totient function (A000010).

Original entry on oeis.org

1484, 2534, 3002, 3674, 3926, 4454, 4484, 4784, 4844, 5264, 5312, 5984, 6104, 7994, 8294, 8414, 8774, 8834, 9074, 9164, 9944, 10004, 10724, 11024, 11684, 11894, 12254, 13034, 13064, 13166, 13454, 13754, 14234, 15344, 15554, 16184, 16214, 16814, 17384, 17534
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2019

Keywords

Examples

			1484 is in the sequence since phi(1484) = 624, phi(1485) = 720, phi(1486) = 742, and phi(1487) = 1486, and 624 < 720 < 742 < 1486.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 34, entry 105 and p. 130, entry 1484.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[Differences @ EulerPhi[n + Range[0, 3]], # > 0 &]; Select[Range[18000], aQ]
  • PARI
    ok(k)={for(i=0, 2, if(eulerphi(k+i) >= eulerphi(k+i+1), return(0))); 1}
    { select(ok, [1..20000]) } \\ Andrew Howroyd, Sep 28 2019

A326817 Numbers k such that phi(k) > phi(k+1) > phi(k+2) > phi(k+3) where phi is the Euler totient function (A000010).

Original entry on oeis.org

823, 943, 3133, 4387, 4873, 5443, 5563, 5863, 7213, 7753, 7873, 8383, 9007, 10333, 10693, 11113, 11503, 12043, 12763, 13483, 13843, 13921, 14623, 14683, 16573, 16663, 16963, 16993, 17113, 17983, 19003, 19093, 19303, 20083, 20143, 20953, 21613, 21733, 22513
Offset: 1

Views

Author

Kritsada Moomuang, Oct 20 2019

Keywords

Examples

			823 is in the sequence since phi(823) = 822, phi(824) = 408, phi(825) = 400, phi(826) = 348, and 822 > 408 > 400 > 348.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, page 106, entry 823.

Crossrefs

Programs

  • Mathematica
    aQ[n_] := AllTrue[Differences @ EulerPhi[n + Range[0, 3]], # < 0 &]; Select[Range[23000], aQ] (* Amiram Eldar, Oct 20 2019 *)

A328056 Numbers k such that phi(k) > phi(k+1) > phi(k+2) where phi is the Euler totient function (A000010).

Original entry on oeis.org

313, 523, 733, 823, 824, 943, 944, 973, 1153, 1363, 1573, 1753, 1783, 1813, 1993, 2143, 2413, 2473, 2623, 2803, 3043, 3133, 3134, 3253, 3313, 3463, 3703, 3883, 4093, 4123, 4303, 4387, 4388, 4513, 4723, 4873, 4874, 4933, 5113, 5143, 5353, 5443, 5444, 5563, 5564
Offset: 1

Views

Author

Kritsada Moomuang, Oct 03 2019

Keywords

Comments

Contains all members k of A206581 such that k==103 (mod 210) except 103.- Robert Israel, Oct 16 2019

Examples

			313 is in the sequence since phi(313) = 312, phi(314) = 156, phi(315) = 144, and 312 > 156 > 144.
		

Crossrefs

Supersequence of A326817.

Programs

A076771 Even numbers n representable as the sum of two non-coprime odd composites.

Original entry on oeis.org

18, 24, 30, 36, 40, 42, 48, 50, 54, 56, 60, 66, 70, 72, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 110, 112, 114, 120, 126, 130, 132, 136, 138, 140, 144, 150, 152, 154, 156, 160, 162, 168, 170, 174, 176, 180, 182, 184, 186, 190, 192, 196, 198, 200, 204
Offset: 1

Views

Author

Jon Perry, Nov 14 2002

Keywords

Comments

It is conjectured that there is no N such that for all n > N, every even number is represented.
The conjecture is true since 2p, p prime, is never a member of this sequence. - Charles R Greathouse IV, Aug 08 2011
An equivalent definition of this sequence: even numbers n such that phi(n) < (n-4)/2. - Arkadiusz Wesolowski, Aug 08 2011
Also: products of an even number >= 6 and an odd number >= 3. - Charles R Greathouse IV, Aug 08 2011

Examples

			40 = 5*(3 + 5).
		

Crossrefs

Cf. A161962.

Programs

  • PARI
    upTo(lim)=my(v=List());forstep(a=6,lim\3,2,forstep(b=3,lim\a,2,listput(v,a*b)));vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Aug 08 2011
    
  • PARI
    upTo(lim)=my(v=List(),p=7,m);forprime(q=8,lim\2,forstep(n=p+2,q-2,2,m=n;while((m<<=1)<=lim,listput(v,m)));p=q);forstep(n=2*p+4,lim,4,listput(v,n));forprime(p=3,lim>>3,m=p<<3;while(m<=lim,listput(v,m);m<<=1));vecsort(Vec(v)) \\ Charles R Greathouse IV, Aug 08 2011

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 08 2011

A179271 Odd long legs `B` of more than one primitive Pythagorean triangle.

Original entry on oeis.org

2145, 3315, 3465, 4095, 4845, 5005, 5865, 6435, 6545, 6555, 7735, 8645, 9009, 9945, 10005, 10695, 11305, 11781, 13167, 13485, 13685, 13923, 14535, 15015, 15295, 15561, 16065, 16095, 17017, 17205, 17255, 17835, 17955, 18837, 19019, 19065
Offset: 1

Views

Author

Keywords

Comments

2145,752,2273;2145,1568,2657;;3315,812,3413;3315,2852,4373;

Crossrefs

Programs

  • Mathematica
    lst1={};lst={0};Do[Do[If[GCD[a,b]==1,c=Sqrt[a^2+b^2];If[IntegerQ[c],AppendTo[lst,b];L=Length[lst];If[lst[[L]]==lst[[L-1]]&&OddQ[lst[[L]]],Print[lst[[L]]];AppendTo[lst1,lst[[L]]]]]],{a,b-1,3,-1}],{b,4,4*7!}];lst1

Extensions

a(20) - a(36) Robert G. Wilson v, Jul 12 2010
Showing 1-7 of 7 results.