A162005
The EG1 triangle.
Original entry on oeis.org
1, 2, 1, 16, 28, 1, 272, 1032, 270, 1, 7936, 52736, 36096, 2456, 1, 353792, 3646208, 4766048, 1035088, 22138, 1, 22368256, 330545664, 704357760, 319830400, 27426960, 199284, 1, 1903757312, 38188155904, 120536980224, 93989648000
Offset: 1
The first few rows of the EG1 triangle are :
[1]
[2, 1]
[16, 28, 1]
[272, 1032, 270, 1]
The first few RG(z,1-2*m) polynomials are:
RG(z,-1) = 1
RG(z,-3) = 2+z
RG(z,-5) = 16+28*z+z^2
RG(z,-7) = 272+1032*z+270*z^2+z^3
The first few GFREG1(z,1-2*m) are:
GFREG1(z,-1) = (1)*(1)/(2*(1-z)^(3/2))
GFREG1(z,-3) = (-1)*(2+z)/(2^3*(1-z)^(5/2))
GFREG1(z,-5) = (1)*(16+28*z+z^2)/( 2^5*(1-z)^(7/2))
GFREG1(z,-7) = (-1)*(272+1032*z+270*z^2+z^3)/(2^7*(1-z)^(9/2))
The first few REG1(1-2*m,n) are:
REG1(-1,n) = (1/1)*(1)*(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-3,n) = (-1/2)*(n) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-5,n) = (1/4) *(n+3*n^2) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
REG1(-7,n) = (-1/8)*(4*n+15*n^2+15*n^3) *(1/n)*4^(-n)*(2*n)!/(n-1)!^2
The first few ECGP(1-2*m,n) polynomials are:
ECGP(-1,n) = 1
ECGP(-3,n) = n
ECGP(-5,n) = n+3*n^2
ECGP(-7,n) = 4*n+15*n^2+15*n^3
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812.
-
nmax:=7; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1) * (x+1)*T1(i-1, x+1)-2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1=0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1)*A156919(n-1, m-1) end do end do: for n from 0 to nmax do SF(n) := sum(A156919(n, k1)*z^k1, k1=0..n)/(2^(n+1)*(1-z)^((2*n+3)/2)) od: GFREG1(z, -1) := A156919(0, 0)*A094665 (0, 0) / (2*(1-z)^(3/2)): for m from 2 to nmax do GFREG1(z, 1-2*m) := simplify((-1)^(m+1)*2^(1-m)* sum(A094665(m-1, k2)*SF(k2), k2=1..m-1)) od: for m from 1 to mmax do g(m) := sort((numer ((-1)^(m+1)* GFREG1(z, 1-2*m))), ascending) od: for n from 1 to nmax do for m from 1 to n do a(n, m) := abs(coeff(g(n), z, m-1)) od: od: seq(seq(a(n, m), m=1..n), n=1..nmax);
# Maple program edited by Johannes W. Meijer, Sep 25 2012
A004004
a(n) = (3^(2*n+1) - 8*n - 3)/16.
Original entry on oeis.org
0, 1, 14, 135, 1228, 11069, 99642, 896803, 8071256, 72641337, 653772070, 5883948671, 52955538084, 476599842805, 4289398585298, 38604587267739, 347441285409712, 3126971568687473, 28142744118187326, 253284697063686007, 2279562273573174140, 20516060462158567341
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- A. Fransen, Conjectures on the Taylor series expansion coefficients of the Jacobian elliptic function sn(n,k), Math. Comp., 37 (1981), 475-497.
- C. L. Mallows, Letter to N. J. A. Sloane, May 16 1973
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- G. Viennot, Une interprétation combinatoire des coefficients des développements en série entière des fonctions elliptiques de Jacobi, J. Combin. Theory, A 29 (1980), 121-133.
- Index entries for linear recurrences with constant coefficients, signature (11,-19,9).
Equals the second right hand column of triangle
A162005 divided by 2.
(End)
-
LinearRecurrence[{11, -19, 9}, {0, 1, 14}, 100] (* G. C. Greubel, Jul 06 2016 *)
Table[(3^(2 n + 1) - 8 n - 3)/16, {n, 0, 24}] (* Michael De Vlieger, Jul 08 2016 *)
A162009
Fourth right hand column of the EG1 triangle A162005.
Original entry on oeis.org
272, 52736, 4766048, 319830400, 18598875760, 1002968825344, 51882638754240, 2621627565515520, 130715075544000720, 6468157990602644480, 318685706549526508832, 15663443488266952501376, 768809642314801857986608
Offset: 1
Fourth right hand column of the EG1 triangle
A162005.
A162010
Fifth right hand column of the EG1 triangle A162005.
Original entry on oeis.org
7936, 3646208, 704357760, 93989648000, 10324483102720, 1013356176688128, 92857038223998720, 8148225153293502720, 695389790665420312320, 58282750219059501633280, 4827428305286309709508736
Offset: 1
Fifth right hand column of the EG1 triangle
A162005.
A162011
A sequence related to the recurrence relations of the right hand columns of the EG1 triangle A162005.
Original entry on oeis.org
1, -1, 1, -11, 19, -9, 1, -46, 663, -3748, 7711, -6606, 2025, 1, -130, 6501, -163160, 2236466, -17123340, 71497186, -154127320, 174334221, -98986050, 22325625, 1, -295, 36729, -2549775, 109746165, -3080128275, 57713313405, -727045264875
Offset: 1
The recurrence relations for the first few right hand columns:
n = 1: a(n) = 1*a(n-1)
n = 2: a(n) = 11*a(n-1)-19*a(n-2)+9*a(n-3)
n = 3: a(n) = 46*a(n-1)-663*a(n-2)+3748*a(n-3)-7711*a(n-4)+6606*a(n-5)-2025*a(n-6)
n = 4: a(n) = 130*a(n-1)-6501*a(n-2)+163160*a(n-3)-2236466*a(n-4)+17123340*a(n-5)-71497186*a(n-6)+154127320*a(n-7)-174334221*a(n-8)+98986050*a(n-9)-22325625*a(n-10)
A000124 (the Lazy Caterer's sequence) gives the number of terms of the RR(n).
A006324,
A162012 and
A162013 equal the absolute values of the coefficients that precede the a(n-1), a(n-2) and a(n-3) factors of the RR(n).
-
nmax:=5; for n from 1 to nmax do RR(n) := expand(product((1-(2*k-1)^2*z)^(n-k+1), k=1..n), z) od: T:=1: for n from 1 to nmax do for m from 0 to(n)*(n+1)/2 do a(T):= coeff(RR(n), z, m): T:=T+1 od: od: seq(a(k), k=1..T-1);
A162014
Sequence related to the o.g.f.s. of the right hand columns of the EG1 triangle A162005.
Original entry on oeis.org
1, 8, -1536, -14155776, 10436770529280, 923378661099307008000, -13724698564186788948502118400000, -45695540009113634492156662349750599680000000
Offset: 1
The polynomials in the numerators of the first few o.g.f.s are:
numer(GF(1)) = 1
numer(GF(2)) = 2+6*z
numer(GF(3)) = 16+296*z-768*z^2-1080*z^3
numer(GF(4)) = 272+17376*z-321360*z^2-1298624*z^3+8914800*z^4-11262240*z^5-10206000*z^6
numer(GF(5)) = 7936 + 1305088*z - 79792256*z^2 - 109331968*z^3 + 41828672000*z^4-460917924352*z^5 + 238697445120*z^6 + 5066784271872*z^7 - 14723693948160*z^8+ 12172737024000*z^9 + 8101522800000*z^10
A322230
E.g.f.: S(x,k) = Integral C(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.
Original entry on oeis.org
1, 1, 2, 1, 28, 16, 1, 270, 1032, 272, 1, 2456, 36096, 52736, 7936, 1, 22138, 1035088, 4766048, 3646208, 353792, 1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256, 1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312, 1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976, 1, 145282674, 445736371872, 51882638754240, 1013356176688128, 5416305638467584, 9498855414644736, 5590122715250688, 961530104709120, 29088885112832
Offset: 0
E.g.f.: S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n+1)*k^(2*j)/(2*n+1)! in e.g.f. S(x,k) begins:
1;
1, 2;
1, 28, 16;
1, 270, 1032, 272;
1, 2456, 36096, 52736, 7936;
1, 22138, 1035088, 4766048, 3646208, 353792;
1, 199284, 27426960, 319830400, 704357760, 330545664, 22368256;
1, 1793606, 702812568, 18598875760, 93989648000, 120536980224, 38188155904, 1903757312;
1, 16142512, 17753262208, 1002968825344, 10324483102720, 28745874079744, 24060789342208, 5488365862912, 209865342976; ...
RELATED SERIES.
The related series C(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
-
N=10;
{S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
for(n=0,N, for(j=0,n, print1( (2*n+1)!*polcoeff(polcoeff(S,2*n+1,x),2*j,k),", ")) ;print(""))
Showing 1-7 of 7 results.
Comments