A162173 Absolute difference of numerator and denominator of Bernoulli(2*n), n >= 0.
0, 5, 31, 41, 31, 61, 3421, 1, 4127, 43069, 174941, 854375, 236366821, 8553097, 23749461899, 8615841261683, 7709321041727, 2577687858361, 26315271553055396563, 2929993913841553, 261082718496449135581
Offset: 0
Keywords
Examples
a(0) = abs(1 - 1) = 0. a(1) = abs(1 - 6) = 5. a(2) = abs(-1 - 30) = 31.
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..310
Programs
-
GAP
List([0..30],n->AbsInt(NumeratorRat(Bernoulli(2*n))-DenominatorRat(Bernoulli(2*n)))); # Muniru A Asiru, Nov 25 2018
-
Maple
A000367 := proc(n) numer(bernoulli(2*n)) ; end: A002445 := proc(n) denom(bernoulli(2*n)) ; end: A162173 := proc(n) abs( A000367(n)-A002445(n)) ; end: seq(A162173(n),n=0..40) ; # R. J. Mathar, Sep 13 2009
-
Mathematica
a[n_] := Abs[Numerator[BernoulliB[2n]] - Denominator[BernoulliB[2n]]]; Array[a, 20, 0] (* Amiram Eldar, Nov 25 2018 *) Abs[Denominator[#]-Numerator[#]]&/@BernoulliB[2 Range[0,20]] (* Harvey P. Dale, Jun 18 2022 *)
-
PARI
a(n) = my(b=bernfrac(2*n)); abs(numerator(b)-denominator(b)); \\ Michel Marcus, Nov 25 2018
Extensions
a(13) corrected by Paul Curtz, Sep 07 2009
a(15) and a(16) corrected by R. J. Mathar, Sep 13 2009
Offset 0 from Amiram Eldar, Nov 25 2018