A162642 Number of odd exponents in the canonical prime factorization of n.
0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 0, 1, 3, 1, 2, 3
Offset: 1
Links
- Jason Kimberley, Table of n, a(n) for n = 1..20000
- R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 106 (2018).
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Magma
A162642:=func
; [A162642(n):n in[1..105]]; // Jason Kimberley, Dec 30 2015 -
Maple
A162642 := proc(n) add ( op(2,f) mod 2 ,f=ifactors(n)[2]) ; end proc: # R. J. Mathar, Mar 30 2011
-
Mathematica
{0}~Join~Table[Count[Last /@ FactorInteger@ n, e_ /; OddQ@ e], {n, 2, 105}] (* Michael De Vlieger, Jan 06 2016 *)
-
PARI
a(n) = {my(f = factor(n)); sum(k=1, #f~, f[k,2] % 2);} \\ Michel Marcus, Jan 08 2016
-
Scheme
;; With memoization-macro definec. (definec (A162642 n) (if (= 1 n) 0 (+ (A000035 (A067029 n)) (A162642 (A028234 n))))) ;; Antti Karttunen, Nov 28 2017
Formula
a(A000290(n)) = 0, n > 0. - Michel Marcus, Jan 08 2016
G.f.: Sum_{i>=1} Sum_{j>=1} (-1)^j x^(prime(i)^j)/(x^(prime(i)^j) - 1). - Robert Israel, Jan 15 2016
From Antti Karttunen, Nov 28 2017: (Start)
Additive with a(p^e) = A000035(e).
a(n) <= A295664(n).
(End)
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = gamma + Sum_{p prime} (log(1-1/p) + 1/(p+1)) = A077761 - A179119 = -0.0687327134... and gamma is Euler's constant (A001620). - Amiram Eldar, Dec 25 2021
Comments