cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163114 a(n) = 5*a(n-2) for n > 2; a(1) = 3, a(2) = 5.

Original entry on oeis.org

3, 5, 15, 25, 75, 125, 375, 625, 1875, 3125, 9375, 15625, 46875, 78125, 234375, 390625, 1171875, 1953125, 5859375, 9765625, 29296875, 48828125, 146484375, 244140625, 732421875, 1220703125, 3662109375, 6103515625, 18310546875
Offset: 1

Views

Author

Klaus Brockhaus, Jul 21 2009

Keywords

Comments

Binomial transform is A163062, second binomial transform is A163063, third binomial transform is A098648 without initial 1, fourth binomial transform is A163064, fifth binomial transform is A163065.

Crossrefs

Programs

  • Magma
    [ n le 2 select 2*n+1 else 5*Self(n-2): n in [1..29] ];
    
  • Mathematica
    CoefficientList[Series[x*(3 + 5*x)/(1 - 5*x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 21 2017 *)
    LinearRecurrence[{0,5},{3,5},30] (* Harvey P. Dale, Aug 01 2021 *)
  • PARI
    x='x+O('x^30); Vec(x*(3+5*x)/(1-5*x^2)) \\ G. C. Greubel, Dec 21 2017

Formula

a(n) = (2-(-1)^n)*5^(1/4*(2*n-1+(-1)^n)).
G.f.: x*(3+5*x)/(1-5*x^2).
a(n) = A056487(n), n>=1.
E.g.f.: cosh(sqrt(5)*x) + 3*sinh(sqrt(5)*x)/sqrt(5) - 1. - Stefano Spezia, Nov 19 2023