cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163573 Primes p such that (p+1)/2, (p+2)/3 and (p+3)/4 are also primes.

Original entry on oeis.org

12721, 16921, 19441, 24481, 49681, 61561, 104161, 229321, 255361, 259681, 266401, 291721, 298201, 311041, 331921, 419401, 423481, 436801, 446881, 471241, 525241, 532801, 539401, 581521, 600601, 663601, 704161, 709921, 783721, 867001, 904801
Offset: 1

Views

Author

Keywords

Comments

Are all terms == 1 (mod 10)?
Subsequence of A005383, of A091180 and of A036570. - R. J. Mathar, Aug 01 2009
Since (p+2)/3 and (p+3)/4 must be integer, the Chinese remainder theorem shows that all terms are == 1 (mod 12). - R. J. Mathar, Aug 01 2009
All terms are of the form 120k+1: a(n)=120*A163625(n)+1. - Zak Seidov, Aug 01 2009
Each term is congruent to 1 mod 120, so the last digits are always '1': For all four values to be integers it must be that p = 1 (mod 12). As p is prime, it must be that p = 1, 13, 37, 49, 61, 73, 97, or 109 (mod 120). In all but the first case either (p+3)/4 is even or one of the three expressions gives a value divisible by 5 (or both, and possibly the same expression). - Rick L. Shepherd, Aug 01 2009
{6*a(n)}A050498.%20Proof:%20with%20p%20=%20a(n)%20the%20arithmetic%20progression%20with%20four%20terms%20of%20difference%206%20and%20constant%20value%20of%20Euler's%20phi,%20namely%202*(p-1),%20is%206*(p,%202*(p+1)/2,%203*(p+2)/3,%204*(p+3)/4).%20Use%20phi(n,%20prime)%20=%20phi(n)*(prime-1)%20if%20gcd(n,%20prime)%20=%201.%20Here%20n%20=%206,%2012,%2018,%2024%20and%20prime%20%3E%203%20for%20p%20%3E=%20a(1).%20Thanks%20to%20_Hugo%20Pfoertner">{n >= 1} is a subsequence of A050498. Proof: with p = a(n) the arithmetic progression with four terms of difference 6 and constant value of Euler's phi, namely 2*(p-1), is 6*(p, 2*(p+1)/2, 3*(p+2)/3, 4*(p+3)/4). Use phi(n, prime) = phi(n)*(prime-1) if gcd(n, prime) = 1. Here n = 6, 12, 18, 24 and prime > 3 for p >= a(1). Thanks to _Hugo Pfoertner for a link to the present sequence in connection with A339883. - Wolfdieter Lang, Jan 11 2021

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(6, 1200000) | IsPrime((p+1) div 2) and IsPrime((p+2) div 3) and IsPrime((p+3) div 4)]; // Vincenzo Librandi, Apr 09 2013
    
  • Mathematica
    lst={};Do[p=Prime[n];If[PrimeQ[(p+1)/2]&&PrimeQ[(p+2)/3]&&PrimeQ[(p+3)/ 4],AppendTo[lst,p]],{n,2*9!}];lst
  • PARI
    is(n)=n%120==1 && isprime(n) && isprime(n\2+1) && isprime(n\3+1) && isprime(n\4+1) \\ Charles R Greathouse IV, Nov 30 2016
    
  • Python
    from sympy import prime, isprime
    A163573_list = [4*q-3 for q in (prime(i) for i in range(1,10000)) if isprime(4*q-3) and isprime(2*q-1) and (not (4*q-1) % 3) and isprime((4*q-1)//3)] # Chai Wah Wu, Nov 30 2016

Extensions

Slightly edited by R. J. Mathar, Aug 01 2009