A163756 14 times triangular numbers.
0, 14, 42, 84, 140, 210, 294, 392, 504, 630, 770, 924, 1092, 1274, 1470, 1680, 1904, 2142, 2394, 2660, 2940, 3234, 3542, 3864, 4200, 4550, 4914, 5292, 5684, 6090, 6510, 6944, 7392, 7854, 8330, 8820, 9324, 9842, 10374, 10920, 11480, 12054, 12642, 13244, 13860
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[7*n*(n-1),{n,100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *) 14*Accumulate[Range[0,50]] (* or *) LinearRecurrence[{3,-3,1},{0,14,42},50] (* Harvey P. Dale, May 11 2021 *)
-
PARI
a(n)=7*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 7*n*(n+1) = 14*A000217(n).
G.f.: 14*x/(1-x)^3.
E.g.f.: 7*x*(x + 2)*exp(x). - G. C. Greubel, Aug 02 2017
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/7.
Product_{n>=1} (1 - 1/a(n)) = -(7/Pi)*cos(sqrt(11/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/Pi)*cos(sqrt(3/7)*Pi/2). (End)
Extensions
Extended by R. J. Mathar, Aug 06 2009
Comments