cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163756 14 times triangular numbers.

Original entry on oeis.org

0, 14, 42, 84, 140, 210, 294, 392, 504, 630, 770, 924, 1092, 1274, 1470, 1680, 1904, 2142, 2394, 2660, 2940, 3234, 3542, 3864, 4200, 4550, 4914, 5292, 5684, 6090, 6510, 6944, 7392, 7854, 8330, 8820, 9324, 9842, 10374, 10920, 11480, 12054, 12642, 13244, 13860
Offset: 0

Views

Author

Vincenzo Librandi, Aug 03 2009

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ... and the same line from 0, in the direction 0, 42, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Oct 03 2011

Crossrefs

Cf. A274978 (generalized 16-gonal numbers).

Programs

Formula

a(n) = 7*n*(n+1) = 14*A000217(n).
G.f.: 14*x/(1-x)^3.
a(n) = 7*A002378(n) = 2*A024966(n) = A069127(n+1) - 1. - Omar E. Pol, Oct 03 2011
E.g.f.: 7*x*(x + 2)*exp(x). - G. C. Greubel, Aug 02 2017
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/7.
Sum_{n>=1} (-1)^(n+1)/a(n) = (2*log(2) - 1)/7.
Product_{n>=1} (1 - 1/a(n)) = -(7/Pi)*cos(sqrt(11/7)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (7/Pi)*cos(sqrt(3/7)*Pi/2). (End)

Extensions

Extended by R. J. Mathar, Aug 06 2009