A069131
Centered 18-gonal numbers.
Original entry on oeis.org
1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1
a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- John Elias, Illustration of Initial Terms: Triangular & Hexagonal Configurations.
- Lamine Ngom, An origin of A069131 (illustration).
- Leo Tavares, Illustration: Tri-Hexagons.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. centered polygonal numbers listed in
A069190.
Cf.
A000217,
A028387,
A195042,
A016945,
A002378,
A082040,
A304163,
A003215,
A247792,
A016777,
A016778,
A016790,
A010008,
A008600,
A002061.
Cf.
A000290,
A139278,
A069129,
A062786,
A033996,
A060544,
A027468,
A016754,
A124080,
A069099,
A152740,
A049598,
A005891,
A152741,
A001844,
A163756,
A005448,
A194715.
-
[9*n^2 - 9*n + 1 : n in [1..50]]; // Wesley Ivan Hurt, May 05 2021
-
FoldList[#1 + #2 &, 1, 18 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3,-3,1},{1,19,55},50] (* Harvey P. Dale, Jan 20 2014 *)
-
a(n)=9*n^2-9*n+1 \\ Charles R Greathouse IV, Oct 07 2015
A069127
Centered 14-gonal numbers.
Original entry on oeis.org
1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, 6945, 7393, 7855, 8331, 8821, 9325, 9843, 10375, 10921, 11481, 12055, 12643, 13245, 13861, 14491
Offset: 1
a(5) = 141 because 7*5^2 - 7*5 + 1 = 175 - 35 + 1 = 141.
a(5) = 71 because 71 = (7*5^2 - 7*5 + 2)/2 = (175 - 35 + 2)/2 = 142/2.
From _Bruno Berselli_, Oct 27 2017: (Start)
1 = -(1) + (2).
15 = -(1+2) + (3+4+5+6).
43 = -(1+2+3) + (4+5+6+7+8+9+10).
85 = -(1+2+3+4) + (5+6+7+8+9+10+11+12+13+14).
141 = -(1+2+3+4+5) + (6+7+8+9+10+11+12+13+14+15+16+17+18). (End)
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Leo Tavares, Illustration: Heptagonal Stars.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
A262221
a(n) = 25*n*(n + 1)/2 + 1.
Original entry on oeis.org
1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).
Cf. centered polygonal numbers listed in
A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26:
A000004,
A000124,
A002378,
A005448,
A005891,
A028896,
A033996,
A035008,
A046092,
A049598,
A060544,
A064200,
A069099,
A069125,
A069126,
A069128,
A069130,
A069132,
A069174,
A069178,
A080956,
A124080,
A163756,
A163758,
A163761,
A164136,
A173307.
-
[25*n*(n+1)/2+1: n in [0..50]];
-
Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
-
vector(50, n, n--; 25*n*(n+1)/2+1)
-
[25*n*(n+1)/2+1 for n in (0..50)]
A194715
15 times triangular numbers.
Original entry on oeis.org
0, 15, 45, 90, 150, 225, 315, 420, 540, 675, 825, 990, 1170, 1365, 1575, 1800, 2040, 2295, 2565, 2850, 3150, 3465, 3795, 4140, 4500, 4875, 5265, 5670, 6090, 6525, 6975, 7440, 7920, 8415, 8925, 9450, 9990, 10545, 11115, 11700, 12300, 12915, 13545, 14190, 14850, 15525
Offset: 0
-
[15*n*(n+1)/2: n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
A194715:=n->15*n*(n+1)/2: seq(A194715(n), n=0..60); # Wesley Ivan Hurt, Dec 23 2015
-
15*Accumulate[Range[0, 60]] (* Harvey P. Dale, Feb 12 2012 *)
Table[15 n (n + 1)/2, {n, 0, 60}] (* Wesley Ivan Hurt, Dec 23 2015 *)
15 Binomial[Range[20], 2] (* Eric W. Weisstein, Jul 28 2017 *)
15 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 28 2017 *)
-
a(n)=15*n*(n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
A281944
Triangle read by rows: T(n,k) (n>=1, 3<=k<=n+2) is the number of k-sequences of balls colored with n colors such that exactly two balls are of a color seen previously in the sequence.
Original entry on oeis.org
1, 2, 14, 3, 42, 150, 4, 84, 600, 1560, 5, 140, 1500, 7800, 16800, 6, 210, 3000, 23400, 100800, 191520, 7, 294, 5250, 54600, 352800, 1340640, 2328480, 8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000, 9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400, 10, 630, 18000, 327600, 4233600, 40219200, 279417600, 1360800000, 4191264000, 6187104000
Offset: 1
n=1 => AAA -> T(1,3)=1
n=2 => AAA,BBB -> T(2,3)=2
AAAB,AABA,ABAA,BAAA,BBBA,BBAB,BABB,ABBB,AABB,ABAB,ABBA,BAAB,BABA,BBAA -> T(2,4)=14
Triangle starts:
1
2, 14
3, 42, 150
4, 84, 600, 1560
5, 140, 1500, 7800, 16800
6, 210, 3000, 23400, 100800, 191520
7, 294, 5250, 54600, 352800, 1340640, 2328480
8, 392, 8400, 109200, 940800, 5362560, 18627840, 30240000
9, 504, 12600, 196560, 2116800, 16087680, 83825280, 272160000, 419126400
Other sequences in table: T(n,n+2) =
A037960(n).
-
Table[(Binomial[k, 3] + 3 Binomial[k, 4]) n!/(n + 2 - k)!, {n, 12}, {k, 3, n + 2}] // Flatten (* Michael De Vlieger, Feb 05 2017 *)
-
T(n, k) = (binomial(k,3) + 3*binomial(k,4)) * n! / (n+2-k)!;
tabl(nn) = for (n=1, nn, for (k=3, n+2, print1(T(n,k), ", ")); print()); \\ Michel Marcus, Feb 04 2017
Showing 1-5 of 5 results.
Comments