cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247026 Number A(n,k) of endofunctions on [n] that are the k-th power of an endofunction; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 12, 256, 1, 1, 1, 3, 19, 100, 3125, 1, 1, 1, 4, 12, 116, 1075, 46656, 1, 1, 1, 3, 21, 73, 985, 13356, 823543, 1, 1, 1, 4, 10, 148, 580, 11026, 197764, 16777216, 1, 1, 1, 3, 21, 44, 1281, 5721, 145621, 3403576, 387420489, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Number of endofunctions f on [n] such that an endofunction g on [n] exists with f=g^k.

Examples

			A(3,2) = 12: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,1), (3,1,2), (3,2,3), (3,3,3).
A(3,6) = 10: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (3,2,3), (3,3,3).
A(4,4) = 73: (1,1,1,1), (1,1,1,4), (1,1,3,1), (1,1,3,3), ..., (4,4,1,3), (4,4,2,3), (4,4,3,4), (4,4,4,4).
Square array A(n,k) begins:
  1,      1,      1,      1,     1,      1,     1,      1, ...
  1,      1,      1,      1,     1,      1,     1,      1, ...
  1,      4,      3,      4,     3,      4,     3,      4, ...
  1,     27,     12,     19,    12,     21,    10,     21, ...
  1,    256,    100,    116,    73,    148,    44,    148, ...
  1,   3125,   1075,    985,   580,   1281,   295,   1305, ...
  1,  46656,  13356,  11026,  5721,  12942,  3136,  13806, ...
  1, 823543, 197764, 145621, 69244, 150955, 42784, 169681, ...
		

Crossrefs

Rows n=0+1, 2-7 give: A000012, A103947, A103948, A103949, A102709, A103950, A247058.
Main diagonal gives A247059.
Cf. A247005 (the same for permutations).

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms. *)
    nmax = 8;
    f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}];
    A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length;
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)

A163947 Number of functions on a finite set that are not obtainable by any composition power (excluding identity as power).

Original entry on oeis.org

0, 0, 6, 84, 1400, 25590, 516432
Offset: 1

Views

Author

Carlos Alves, Aug 06 2009

Keywords

Comments

a(n) is the number of functions on a finite set {1,...,n} that are not composition powers of any other function or powers(>1) of itself.
Hard to compute for n>7, as the number of functions to test is n^n.

Examples

			For n=2, the set is {1,2} and we have 4 functions: the constants 1 and 2, the identity, and the transposition. Any composition power of a constant function or of identity is the function itself. Odd composition powers of the transposition give the transposition. Thus all 4 functions are represented.
For n=3, the set is {1,2,3} and f:{1,2,3}->{1,1,2} cannot be represented by composition powers of any other function, or powers of itself (as fof gives the constant function=1). There are 6 functions in this situation (similar).
		

Crossrefs

Formula

a(n) = n^n - A163948(n).

A163861 Number of different 5th-power (quintic) mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 4, 21, 148, 1281, 12942, 150955, 2042272, 31912425, 567737326
Offset: 0

Views

Author

Carlos Alves, Aug 05 2009

Keywords

Comments

The same as A102687 (square composition), A163859 (cubic composition), A163860 (4th-power composition), here a(n) is the number of different mappings g that admit at least one mapping f as the 5th-order root (g=fofofofof) in terms of the composition.

Crossrefs

Column k=5 of A247026.

Extensions

a(0) from Alois P. Heinz, Sep 09 2014
a(8)-a(10) from Bert Dobbelaere, Jan 24 2019

A163948 The number of functions on a finite set that are obtainable by a composition power (excluding identity as power).

Original entry on oeis.org

1, 4, 21, 172, 1725, 21066, 307111
Offset: 1

Views

Author

Carlos Alves, Aug 06 2009

Keywords

Comments

The complementary set to A163947.

Crossrefs

Formula

a(n) = n^n - A163947(n).
Showing 1-4 of 4 results.