cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A102687 Number of different squares of labeled mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 3, 12, 100, 1075, 13356, 197764, 3403576, 66159405, 1438338070
Offset: 0

Views

Author

Eric Wegrzynowski (Eric.Wegrzynowski(AT)lifl.fr), Feb 03 2005

Keywords

Comments

Let A be a finite set of cardinal n, F be the set of mappings from A to A and F_2 be the subset of F including all g such that there exists f in F with g = fof (composition of f with itself). Then a(n) = #F_2.

Crossrefs

Cf. A102709.
Column k=2 of A247026.

Programs

  • Mathematica
    f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}];
    A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length;
    a[n_] := a[n] = A[n, 2];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 7}] (* Jean-François Alcover, May 27 2019 *)

Extensions

a(7) from Vladeta Jovovic, Feb 05 2005
a(8) and a(9) from Joshua Zucker, May 18 2006
a(0) from Alois P. Heinz, Sep 09 2014
a(10) from Bert Dobbelaere, Jan 24 2019

A247005 Number A(n,k) of permutations on [n] that are the k-th power of a permutation; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 6, 1, 1, 1, 2, 3, 24, 1, 1, 1, 1, 4, 12, 120, 1, 1, 1, 2, 3, 16, 60, 720, 1, 1, 1, 1, 6, 9, 80, 270, 5040, 1, 1, 1, 2, 1, 24, 45, 400, 1890, 40320, 1, 1, 1, 1, 6, 4, 96, 225, 2800, 14280, 362880, 1, 1, 1, 2, 3, 24, 40, 576, 1575, 22400, 128520, 3628800, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Number of permutations p on [n] such that a permutation q on [n] exists with p=q^k.

Examples

			A(3,0) = 1: (1,2,3).
A(3,1) = 6: (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), (3,2,1).
A(3,2) = 3: (1,2,3), (2,3,1), (3,1,2).
A(3,3) = 4: (1,2,3), (1,3,2), (2,1,3), (3,2,1).
Square array A(n,k) begins:
  1,    1,    1,    1,    1,    1,    1,    1,    1, ...
  1,    1,    1,    1,    1,    1,    1,    1,    1, ...
  1,    2,    1,    2,    1,    2,    1,    2,    1, ...
  1,    6,    3,    4,    3,    6,    1,    6,    3, ...
  1,   24,   12,   16,    9,   24,    4,   24,    9, ...
  1,  120,   60,   80,   45,   96,   40,  120,   45, ...
  1,  720,  270,  400,  225,  576,  190,  720,  225, ...
  1, 5040, 1890, 2800, 1575, 4032, 1330, 4320, 1575, ...
		

Crossrefs

Main diagonal gives A247009.
Cf. A247026 (the same for endofunctions), A155510.

Programs

  • Maple
    with(combinat): with(numtheory): with(padic):
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(irem(j, mul(p^ordp(k, p), p=factorset(i)))=0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1, k), 0), j=0..n/i)))
        end:
    A:= (n, k)-> `if`(k=0, 1, b(n$2, k)):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[, 1, ] = 1; b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[If[Mod[j, Product[ p^IntegerExponent[k, p], {p, FactorInteger[i][[All, 1]]}]] == 0, (i - 1)!^j*multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n-i*j, i-1, k], 0], {j, 0, n/i}]]]; A[n_, k_] := If[k == 0, 1, b[n, n, k]]; Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 14 2017, after Alois P. Heinz *)

A163859 Number of different cubes of mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 4, 19, 116, 985, 11026, 145621, 2199240, 37942785, 743755750
Offset: 0

Views

Author

Carlos Alves, Aug 05 2009

Keywords

Comments

The same as A102687, but now for cubic compositions, a(n) is the number of different mappings g that admit at least one mapping f as the cubic root (g=fofof) in terms of the composition.

Crossrefs

Column k=3 of A247026.

Extensions

a(0) from Alois P. Heinz, Sep 09 2014
a(8)-a(10) from Bert Dobbelaere, Jan 24 2019

A102709 Let a(n,m) = card{f^(n) : f is a mapping from a set of m elements into itself}, where f^(l)(x) = f^(l-1)(f(x)),l>0, f^(0)(x) = x; sequence gives a(n,5).

Original entry on oeis.org

1, 3125, 1075, 985, 580, 1281, 295, 1305, 580, 925, 631, 1305, 220, 1305, 655, 901, 580, 1305, 295, 1305, 556, 925, 655, 1305, 220, 1281, 655, 925, 580, 1305, 271, 1305, 580, 925, 655, 1281, 220, 1305, 655, 925, 556, 1305, 295, 1305, 580, 901, 655, 1305, 220
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2005

Keywords

Comments

Sequence appears to have a rational o.g.f. - Ralf Stephan, May 18 2007

Crossrefs

Cf. A102687.
Row n=5 of A247026.

Programs

  • Mathematica
    Join[{1, 3125, 1075, 985},LinearRecurrence[{-1, -2, -2, -2, -1, 0, 1, 2, 2, 2, 1, 1},{580, 1281, 295, 1305, 580, 925, 631, 1305, 220, 1305, 655, 901},45]] (* Ray Chandler, Sep 08 2015 *)

Formula

Empirical g.f.: 1+x*(60*x^14 +480*x^13 +2360*x^12 +2584*x^11 +3099*x^10 +2188*x^9 -522*x^8 -4057*x^7 -8367*x^6 -9981*x^5 -12231*x^4 -9965*x^3 -8310*x^2 -4200*x -3125) / ((x -1)*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Aug 07 2013

Extensions

a(0) inserted by Alois P. Heinz, Sep 10 2014

A103950 a(n) is the number of distinct n-th powers of functions {1, 2, 3, 4, 5, 6} -> {1, 2, 3, 4, 5, 6}.

Original entry on oeis.org

1, 46656, 13356, 11026, 5721, 12942, 3136, 13806, 5601, 9286, 5952, 13806, 1921, 13806, 6816, 8422, 5601, 13806, 3136, 13806, 4737, 9286, 6816, 13806, 1921, 12942, 6816, 9286, 5601, 13806, 2272, 13806, 5601, 9286, 6816, 12942, 1921, 13806, 6816
Offset: 0

Views

Author

David Wasserman, Feb 23 2005

Keywords

Comments

For n > 4, a(n+60) = a(n).

Crossrefs

Programs

  • Mathematica
    Join[{1, 46656, 13356, 11026, 5721},LinearRecurrence[{-1, -2, -2, -2, -1, 0, 1, 2, 2, 2, 1, 1},{12942, 3136, 13806, 5601, 9286, 5952, 13806, 1921, 13806, 6816, 8422, 5601},34]] (* Ray Chandler, Sep 08 2015 *)

Formula

G.f.: (120*x^16 +1860*x^15 +8520*x^14 +43110*x^13 +48594*x^12 +67518*x^11 +57786*x^10 +26294*x^9 -27373*x^8 -89675*x^7 -122940*x^6 -160740*x^5 -136773*x^4 -117696*x^3 -60014*x^2 -46657*x -1) / ((x -1)*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Aug 07 2013

A103947 a(n) is the number of distinct n-th powers of functions {1, 2} -> {1, 2}.

Original entry on oeis.org

1, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Examples

			a(4) = 3: the four functions {1, 2} -> {1, 2} are f(x) = 1, g(x) = 2, h(x) = x and j(x) = 3 - x. f^4(x) = f(f(f(f(x)))) = 1; so f^4 = f. Similarly, g^4 = g, h^4 = h and j^4 = h, so there are 3 distinct 4th powers.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{0, 1},{4, 3},104]] (* Ray Chandler, Sep 08 2015 *)

Formula

For n > 2, a(n) = a(n-2).
G.f.: (1+4*x+2*x^2)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = (n mod 2)+(2 mod (n+2))+1. - Aaron J Grech, Sep 02 2024
E.g.f.: 3*cosh(x) + 4*sinh(x) - 2. - Stefano Spezia, Sep 04 2024

A103949 a(n) is the number of distinct n-th powers of functions {1, 2, 3, 4} -> {1, 2, 3, 4}.

Original entry on oeis.org

1, 256, 100, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Comments

For n > 2, a(n) = a(n+12).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,0,1,1,1},{1,256,100,116,73,148,44,148,73},60] (* Harvey P. Dale, Jun 22 2015 *)

Formula

G.f.: (24*x^8+132*x^7+92*x^6-80*x^5-288*x^4-472*x^3-357*x^2-257*x-1) / ((x-1)*(x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Aug 07 2013

A163860 Number of different 4th-power (quartic) mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 3, 12, 73, 580, 5721, 69244, 1000210, 16319601, 297453340
Offset: 0

Views

Author

Carlos Alves, Aug 05 2009

Keywords

Comments

The same as A102687 for square composition, as A163859 for cubic compositions, here a(n) is the number of different mappings g that admit at least one mapping f as the 4th-order root (g=fofofof) in terms of the composition.

Crossrefs

Column k=4 of A247026.

Extensions

a(0) from Alois P. Heinz, Sep 09 2014
a(8)-a(10) from Bert Dobbelaere, Jan 24 2019

A103948 a(n) is the number of distinct n-th powers of functions {1, 2, 3} -> {1, 2, 3}.

Original entry on oeis.org

1, 27, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1, 27},LinearRecurrence[{-1, 0, 1, 1},{12, 19, 12, 21},68]] (* Ray Chandler, Sep 08 2015 *)

Formula

For n > 1, a(n) = a(n+6).
G.f.: (6*x^5-3*x^4-30*x^3-39*x^2-28*x-1) / ((x-1)*(x+1)*(x^2+x+1)). - Colin Barker, Aug 07 2013

A163861 Number of different 5th-power (quintic) mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 4, 21, 148, 1281, 12942, 150955, 2042272, 31912425, 567737326
Offset: 0

Views

Author

Carlos Alves, Aug 05 2009

Keywords

Comments

The same as A102687 (square composition), A163859 (cubic composition), A163860 (4th-power composition), here a(n) is the number of different mappings g that admit at least one mapping f as the 5th-order root (g=fofofofof) in terms of the composition.

Crossrefs

Column k=5 of A247026.

Extensions

a(0) from Alois P. Heinz, Sep 09 2014
a(8)-a(10) from Bert Dobbelaere, Jan 24 2019
Showing 1-10 of 17 results. Next