cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247026 Number A(n,k) of endofunctions on [n] that are the k-th power of an endofunction; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 12, 256, 1, 1, 1, 3, 19, 100, 3125, 1, 1, 1, 4, 12, 116, 1075, 46656, 1, 1, 1, 3, 21, 73, 985, 13356, 823543, 1, 1, 1, 4, 10, 148, 580, 11026, 197764, 16777216, 1, 1, 1, 3, 21, 44, 1281, 5721, 145621, 3403576, 387420489, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Number of endofunctions f on [n] such that an endofunction g on [n] exists with f=g^k.

Examples

			A(3,2) = 12: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,1), (3,1,2), (3,2,3), (3,3,3).
A(3,6) = 10: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (3,2,3), (3,3,3).
A(4,4) = 73: (1,1,1,1), (1,1,1,4), (1,1,3,1), (1,1,3,3), ..., (4,4,1,3), (4,4,2,3), (4,4,3,4), (4,4,4,4).
Square array A(n,k) begins:
  1,      1,      1,      1,     1,      1,     1,      1, ...
  1,      1,      1,      1,     1,      1,     1,      1, ...
  1,      4,      3,      4,     3,      4,     3,      4, ...
  1,     27,     12,     19,    12,     21,    10,     21, ...
  1,    256,    100,    116,    73,    148,    44,    148, ...
  1,   3125,   1075,    985,   580,   1281,   295,   1305, ...
  1,  46656,  13356,  11026,  5721,  12942,  3136,  13806, ...
  1, 823543, 197764, 145621, 69244, 150955, 42784, 169681, ...
		

Crossrefs

Rows n=0+1, 2-7 give: A000012, A103947, A103948, A103949, A102709, A103950, A247058.
Main diagonal gives A247059.
Cf. A247005 (the same for permutations).

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms. *)
    nmax = 8;
    f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}];
    A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length;
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)

A103947 a(n) is the number of distinct n-th powers of functions {1, 2} -> {1, 2}.

Original entry on oeis.org

1, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Examples

			a(4) = 3: the four functions {1, 2} -> {1, 2} are f(x) = 1, g(x) = 2, h(x) = x and j(x) = 3 - x. f^4(x) = f(f(f(f(x)))) = 1; so f^4 = f. Similarly, g^4 = g, h^4 = h and j^4 = h, so there are 3 distinct 4th powers.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{0, 1},{4, 3},104]] (* Ray Chandler, Sep 08 2015 *)

Formula

For n > 2, a(n) = a(n-2).
G.f.: (1+4*x+2*x^2)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = (n mod 2)+(2 mod (n+2))+1. - Aaron J Grech, Sep 02 2024
E.g.f.: 3*cosh(x) + 4*sinh(x) - 2. - Stefano Spezia, Sep 04 2024

A103949 a(n) is the number of distinct n-th powers of functions {1, 2, 3, 4} -> {1, 2, 3, 4}.

Original entry on oeis.org

1, 256, 100, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Comments

For n > 2, a(n) = a(n+12).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,0,1,1,1},{1,256,100,116,73,148,44,148,73},60] (* Harvey P. Dale, Jun 22 2015 *)

Formula

G.f.: (24*x^8+132*x^7+92*x^6-80*x^5-288*x^4-472*x^3-357*x^2-257*x-1) / ((x-1)*(x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Aug 07 2013

A103948 a(n) is the number of distinct n-th powers of functions {1, 2, 3} -> {1, 2, 3}.

Original entry on oeis.org

1, 27, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19, 12, 21, 10, 21, 12, 19
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1, 27},LinearRecurrence[{-1, 0, 1, 1},{12, 19, 12, 21},68]] (* Ray Chandler, Sep 08 2015 *)

Formula

For n > 1, a(n) = a(n+6).
G.f.: (6*x^5-3*x^4-30*x^3-39*x^2-28*x-1) / ((x-1)*(x+1)*(x^2+x+1)). - Colin Barker, Aug 07 2013
Showing 1-4 of 4 results.