cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A247026 Number A(n,k) of endofunctions on [n] that are the k-th power of an endofunction; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 3, 27, 1, 1, 1, 4, 12, 256, 1, 1, 1, 3, 19, 100, 3125, 1, 1, 1, 4, 12, 116, 1075, 46656, 1, 1, 1, 3, 21, 73, 985, 13356, 823543, 1, 1, 1, 4, 10, 148, 580, 11026, 197764, 16777216, 1, 1, 1, 3, 21, 44, 1281, 5721, 145621, 3403576, 387420489, 1
Offset: 0

Views

Author

Alois P. Heinz, Sep 09 2014

Keywords

Comments

Number of endofunctions f on [n] such that an endofunction g on [n] exists with f=g^k.

Examples

			A(3,2) = 12: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (2,3,1), (3,1,2), (3,2,3), (3,3,3).
A(3,6) = 10: (1,1,1), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,3), (2,2,2), (2,2,3), (3,2,3), (3,3,3).
A(4,4) = 73: (1,1,1,1), (1,1,1,4), (1,1,3,1), (1,1,3,3), ..., (4,4,1,3), (4,4,2,3), (4,4,3,4), (4,4,4,4).
Square array A(n,k) begins:
  1,      1,      1,      1,     1,      1,     1,      1, ...
  1,      1,      1,      1,     1,      1,     1,      1, ...
  1,      4,      3,      4,     3,      4,     3,      4, ...
  1,     27,     12,     19,    12,     21,    10,     21, ...
  1,    256,    100,    116,    73,    148,    44,    148, ...
  1,   3125,   1075,    985,   580,   1281,   295,   1305, ...
  1,  46656,  13356,  11026,  5721,  12942,  3136,  13806, ...
  1, 823543, 197764, 145621, 69244, 150955, 42784, 169681, ...
		

Crossrefs

Rows n=0+1, 2-7 give: A000012, A103947, A103948, A103949, A102709, A103950, A247058.
Main diagonal gives A247059.
Cf. A247005 (the same for permutations).

Programs

  • Mathematica
    (* This program is not suitable to compute a large number of terms. *)
    nmax = 8;
    f[a_][b_] /; Length[a]==Length[b] := Table[b[[a[[i]]]], {i, 1, Length[a]}];
    A[n_, k_] := Nest[f[#], Range[n], k]& /@ Tuples[Range[n], {n}] // Union // Length;
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 05 2019 *)

A103619 Number of permutations of n elements admitting a cube root.

Original entry on oeis.org

1, 1, 2, 4, 16, 80, 400, 2800, 22400, 181440, 1814400, 19958400, 218803200, 2844441600, 39822182400, 556972416000, 8911558656000, 151496497152000, 2579172973977600, 49004286505574400, 980085730111488000, 19584861165821952000, 430866945648082944000
Offset: 0

Views

Author

Vladeta Jovovic, Feb 11 2005

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(j, igcd(i, 3))<>0, 0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 08 2014
  • Mathematica
    CoefficientList[Series[(1-x^3)^(1/3)/(1-x) * Product[1/3*E^(1/3*x^(3*m)/m) + 2/3*E^(-1/6*x^(3*m)/m) * Cos[1/6*3^(1/2)*x^(3*m)/m],{m,1,20}],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 13 2014 *)

Formula

E.g.f.: (1-x^3)^(1/3)/(1-x)*Product(1/3*exp(1/3*x^(3*m)/m)+2/3*exp(-1/6*x^(3*m)/m)*cos(1/6*3^(1/2)*x^(3*m)/m), m = 1 .. infinity).

A103620 Number of permutations of n elements admitting a fourth root.

Original entry on oeis.org

1, 1, 1, 3, 9, 45, 225, 1575, 11130, 100170, 897750, 9875250, 108523800, 1410809400, 18332414100, 274986211500, 4127136413400, 70161319027800, 1192076391706200, 22649451442417800, 430247983427262000, 9035207651972502000
Offset: 0

Views

Author

Vladeta Jovovic, Feb 11 2005

Keywords

Crossrefs

Programs

  • Maple
    with(combinat): with(numtheory): with(padic):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          `if`(irem(j, mul(p^ordp(4, p), p=factorset(i)))=0, (i-1)!^j*
          multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 09 2014
  • Mathematica
    CoefficientList[Series[((1+x)/(1-x))^(1/2) * Product[1/2*Cos[1/2*x^(2*m)/m] + 1/2*Cosh[1/2*x^(2*m)/m],{m,1,20}],{x,0,20}],x] * Range[0,20]! (* Vaclav Kotesovec, Sep 13 2014 *)

Formula

E.g.f.: ((1+x)/(1-x))^(1/2)*Product(1/2*cos(1/2*x^(2*m)/m)+1/2*cosh(1/2*x^(2*m)/m), m = 1 .. infinity).

A163859 Number of different cubes of mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 4, 19, 116, 985, 11026, 145621, 2199240, 37942785, 743755750
Offset: 0

Views

Author

Carlos Alves, Aug 05 2009

Keywords

Comments

The same as A102687, but now for cubic compositions, a(n) is the number of different mappings g that admit at least one mapping f as the cubic root (g=fofof) in terms of the composition.

Crossrefs

Column k=3 of A247026.

Extensions

a(0) from Alois P. Heinz, Sep 09 2014
a(8)-a(10) from Bert Dobbelaere, Jan 24 2019

A102709 Let a(n,m) = card{f^(n) : f is a mapping from a set of m elements into itself}, where f^(l)(x) = f^(l-1)(f(x)),l>0, f^(0)(x) = x; sequence gives a(n,5).

Original entry on oeis.org

1, 3125, 1075, 985, 580, 1281, 295, 1305, 580, 925, 631, 1305, 220, 1305, 655, 901, 580, 1305, 295, 1305, 556, 925, 655, 1305, 220, 1281, 655, 925, 580, 1305, 271, 1305, 580, 925, 655, 1281, 220, 1305, 655, 925, 556, 1305, 295, 1305, 580, 901, 655, 1305, 220
Offset: 0

Views

Author

Vladeta Jovovic, Feb 05 2005

Keywords

Comments

Sequence appears to have a rational o.g.f. - Ralf Stephan, May 18 2007

Crossrefs

Cf. A102687.
Row n=5 of A247026.

Programs

  • Mathematica
    Join[{1, 3125, 1075, 985},LinearRecurrence[{-1, -2, -2, -2, -1, 0, 1, 2, 2, 2, 1, 1},{580, 1281, 295, 1305, 580, 925, 631, 1305, 220, 1305, 655, 901},45]] (* Ray Chandler, Sep 08 2015 *)

Formula

Empirical g.f.: 1+x*(60*x^14 +480*x^13 +2360*x^12 +2584*x^11 +3099*x^10 +2188*x^9 -522*x^8 -4057*x^7 -8367*x^6 -9981*x^5 -12231*x^4 -9965*x^3 -8310*x^2 -4200*x -3125) / ((x -1)*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Aug 07 2013

Extensions

a(0) inserted by Alois P. Heinz, Sep 10 2014

A103950 a(n) is the number of distinct n-th powers of functions {1, 2, 3, 4, 5, 6} -> {1, 2, 3, 4, 5, 6}.

Original entry on oeis.org

1, 46656, 13356, 11026, 5721, 12942, 3136, 13806, 5601, 9286, 5952, 13806, 1921, 13806, 6816, 8422, 5601, 13806, 3136, 13806, 4737, 9286, 6816, 13806, 1921, 12942, 6816, 9286, 5601, 13806, 2272, 13806, 5601, 9286, 6816, 12942, 1921, 13806, 6816
Offset: 0

Views

Author

David Wasserman, Feb 23 2005

Keywords

Comments

For n > 4, a(n+60) = a(n).

Crossrefs

Programs

  • Mathematica
    Join[{1, 46656, 13356, 11026, 5721},LinearRecurrence[{-1, -2, -2, -2, -1, 0, 1, 2, 2, 2, 1, 1},{12942, 3136, 13806, 5601, 9286, 5952, 13806, 1921, 13806, 6816, 8422, 5601},34]] (* Ray Chandler, Sep 08 2015 *)

Formula

G.f.: (120*x^16 +1860*x^15 +8520*x^14 +43110*x^13 +48594*x^12 +67518*x^11 +57786*x^10 +26294*x^9 -27373*x^8 -89675*x^7 -122940*x^6 -160740*x^5 -136773*x^4 -117696*x^3 -60014*x^2 -46657*x -1) / ((x -1)*(x +1)*(x^2 -x +1)*(x^2 +1)*(x^2 +x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Aug 07 2013

A163947 Number of functions on a finite set that are not obtainable by any composition power (excluding identity as power).

Original entry on oeis.org

0, 0, 6, 84, 1400, 25590, 516432
Offset: 1

Views

Author

Carlos Alves, Aug 06 2009

Keywords

Comments

a(n) is the number of functions on a finite set {1,...,n} that are not composition powers of any other function or powers(>1) of itself.
Hard to compute for n>7, as the number of functions to test is n^n.

Examples

			For n=2, the set is {1,2} and we have 4 functions: the constants 1 and 2, the identity, and the transposition. Any composition power of a constant function or of identity is the function itself. Odd composition powers of the transposition give the transposition. Thus all 4 functions are represented.
For n=3, the set is {1,2,3} and f:{1,2,3}->{1,1,2} cannot be represented by composition powers of any other function, or powers of itself (as fof gives the constant function=1). There are 6 functions in this situation (similar).
		

Crossrefs

Formula

a(n) = n^n - A163948(n).

A103947 a(n) is the number of distinct n-th powers of functions {1, 2} -> {1, 2}.

Original entry on oeis.org

1, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Examples

			a(4) = 3: the four functions {1, 2} -> {1, 2} are f(x) = 1, g(x) = 2, h(x) = x and j(x) = 3 - x. f^4(x) = f(f(f(f(x)))) = 1; so f^4 = f. Similarly, g^4 = g, h^4 = h and j^4 = h, so there are 3 distinct 4th powers.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},LinearRecurrence[{0, 1},{4, 3},104]] (* Ray Chandler, Sep 08 2015 *)

Formula

For n > 2, a(n) = a(n-2).
G.f.: (1+4*x+2*x^2)/(1-x^2). - Jaume Oliver Lafont, Mar 20 2009
a(n) = (n mod 2)+(2 mod (n+2))+1. - Aaron J Grech, Sep 02 2024
E.g.f.: 3*cosh(x) + 4*sinh(x) - 2. - Stefano Spezia, Sep 04 2024

A103949 a(n) is the number of distinct n-th powers of functions {1, 2, 3, 4} -> {1, 2, 3, 4}.

Original entry on oeis.org

1, 256, 100, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148, 41, 148, 76, 116, 73, 148, 44, 148, 73, 116, 76, 148
Offset: 0

Views

Author

David Wasserman, Feb 21 2005

Keywords

Comments

For n > 2, a(n) = a(n+12).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{-1,-1,0,1,1,1},{1,256,100,116,73,148,44,148,73},60] (* Harvey P. Dale, Jun 22 2015 *)

Formula

G.f.: (24*x^8+132*x^7+92*x^6-80*x^5-288*x^4-472*x^3-357*x^2-257*x-1) / ((x-1)*(x+1)*(x^2+1)*(x^2+x+1)). - Colin Barker, Aug 07 2013

A163860 Number of different 4th-power (quartic) mappings of a finite set of n elements into itself.

Original entry on oeis.org

1, 1, 3, 12, 73, 580, 5721, 69244, 1000210, 16319601, 297453340
Offset: 0

Views

Author

Carlos Alves, Aug 05 2009

Keywords

Comments

The same as A102687 for square composition, as A163859 for cubic compositions, here a(n) is the number of different mappings g that admit at least one mapping f as the 4th-order root (g=fofofof) in terms of the composition.

Crossrefs

Column k=4 of A247026.

Extensions

a(0) from Alois P. Heinz, Sep 09 2014
a(8)-a(10) from Bert Dobbelaere, Jan 24 2019
Showing 1-10 of 15 results. Next