A164549 a(n) = 4*a(n-1) + 2*a(n-2) for n > 1; a(0) = 1, a(1) = 6.
1, 6, 26, 116, 516, 2296, 10216, 45456, 202256, 899936, 4004256, 17816896, 79276096, 352738176, 1569504896, 6983495936, 31072993536, 138258966016, 615181851136, 2737245336576, 12179345048576, 54191870867456
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,2).
Programs
-
Magma
[ n le 2 select 5*n-4 else 4*Self(n-1)+2*Self(n-2): n in [1..22] ];
-
Mathematica
LinearRecurrence[{4,2},{1,6},30] (* Harvey P. Dale, Mar 16 2013 *) CoefficientList[Series[(1 +2x)/(1 -4x -2x^2), {x, 0, 24}], x] (* Michael De Vlieger, Aug 02 2016 *)
-
PARI
Vec((1+2*x)/(1-4*x-2*x^2) + O(x^30)) \\ Michel Marcus, Feb 04 2016
-
Sage
[(i*sqrt(2))^n*(chebyshev_U(n, -i*sqrt(2)) - sqrt(2)*i*chebyshev_U(n-1, -i*sqrt(2))) for n in (0..30)] # G. C. Greubel, Jul 16 2021
Formula
a(n) = ((3+2*sqrt(6))*(2+sqrt(6))^n + (3-2*sqrt(6))*(2-sqrt(6))^n)/6.
G.f.: (1+2*x)/(1-4*x-2*x^2).
a(n) = (i*sqrt(2))^n*(ChebyshevU(n, -i*sqrt(2)) - sqrt(2)*i*ChebyshevU(n-1, -i*sqrt(2))). - G. C. Greubel, Jul 16 2021
Comments