cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164576 Integer averages of the set of the first positive squares up to some n^2.

Original entry on oeis.org

1, 11, 20, 46, 63, 105, 130, 188, 221, 295, 336, 426, 475, 581, 638, 760, 825, 963, 1036, 1190, 1271, 1441, 1530, 1716, 1813, 2015, 2120, 2338, 2451, 2685, 2806, 3056, 3185, 3451, 3588, 3870, 4015, 4313, 4466, 4780, 4941, 5271, 5440, 5786, 5963, 6325, 6510
Offset: 1

Views

Author

Keywords

Comments

Integers of the form A000330(k)/k, k listed in A007310. - R. J. Mathar, Aug 20 2009

Examples

			a(1) = 1^2/1 is an integer. The average of the first two squares is (1^2+2^2)/2=5/2, not integer.
The average of the first three squares is (1^2+2^2+3^2)/3=14/3, not integer.
The average of the first five squares is (1^2+2^2+3^2+4^2+5^2)/ 5=11, integer, and constitutes a(2).
		

Crossrefs

Programs

  • Mathematica
    s=0;lst={};Do[a=(s+=n^2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,6!}];lst
    Flatten[Table[{(1 + 3 k) (1 + 4 k), (1 + k) (11 + 12 k)}, {k, 0, 499}]] (* Zak Seidov, Aug 15 2012 *)
    Module[{nn=150,sq},sq=Range[nn]^2;Select[Table[Mean[Take[sq,n]],{n,nn}],IntegerQ]] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,11,20,46,63},50] (* Harvey P. Dale, Oct 31 2013 *)
  • PARI
    a(n) = 1/4*(12*n^2 - 6*n + (-1)^n*(4*n-1) + 1) \\ Colin Barker, Dec 26 2015

Formula

a(n) = A000330(A007310(n)) / A007310(n) = A175485(A007310(n)). - Jaroslav Krizek, May 28 2010
G.f. ( -x*(1+10*x+7*x^2+6*x^3) ) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 25 2011
a(n) = 1/4*(12*n^2 - 6*n + (-1)^n*(4*n-1) + 1). - Colin Barker, Dec 26 2015

Extensions

Edited by R. J. Mathar, Aug 20 2009