A164607
a(n) = 4*a(n-1) + 4*a(n-2) for n > 1; a(0) = 1, a(1) = 10.
Original entry on oeis.org
1, 10, 44, 216, 1040, 5024, 24256, 117120, 565504, 2730496, 13184000, 63657984, 307367936, 1484103680, 7165886464, 34599960576, 167063388160, 806653394944, 3894867132416, 18806082109440, 90803796967424, 438439516307456
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+4*r)*(2+2*r)^n+(2-4*r)*(2-2*r)^n)/4: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 22 2009
-
LinearRecurrence[{4,4},{1,10},40] (* Harvey P. Dale, Jun 28 2011 *)
-
x='x+O('x^50); Vec((1+6*x)/(1-4*x-4*x^2)) \\ G. C. Greubel, Aug 10 2017
A164608
Expansion of (1+4*x)/(1-8*x+8*x^2).
Original entry on oeis.org
1, 12, 88, 608, 4160, 28416, 194048, 1325056, 9048064, 61784064, 421888000, 2880831488, 19671547904, 134325731328, 917233467392, 6263261888512, 42768227368960, 292039723843584, 1994171971796992, 13617057983627264
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+4*r)*(4+2*r)^n+(2-4*r)*(4-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 22 2009
-
LinearRecurrence[{8,-8}, {1,12,88}, 50] (* G. C. Greubel, Aug 10 2017 *)
-
x='x+O('x^50); Vec((1+4*x)/(1-8*x+8*x^2)) \\ G. C. Greubel, Aug 10 2017
A164609
a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 13.
Original entry on oeis.org
1, 13, 113, 909, 7169, 56237, 440497, 3448941, 27000961, 211377613, 1654759793, 12954178509, 101410868609, 793887651437, 6214891748017, 48652827405741, 380875114341121, 2981653077513613, 23341653831337073, 182728435995639309
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((2+4*r)*(5+2*r)^n+(2-4*r)*(5-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 22 2009
-
LinearRecurrence[{10,-17},{1,13},20] (* Harvey P. Dale, Nov 05 2014 *)
-
x='x+O('x^50); Vec((1+3*x)/(1-10*x+17*x^2)) \\ G. C. Greubel, Aug 10 2017
A154348
a(n) = 16*a(n-1) - 56*a(n-2) for n>1, with a(0)=1, a(1)=16.
Original entry on oeis.org
1, 16, 200, 2304, 25664, 281600, 3068416, 33325056, 361369600, 3915710464, 42414669824, 459354931200, 4974457389056, 53867442077696, 583309459456000, 6316374594945024, 68396663789584384, 740629643316428800
Offset: 0
Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009
-
Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+2*r)^n-(8-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
-
Join[{a=1,b=16},Table[c=16*b-56*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
LinearRecurrence[{16,-56},{1,16},30] (* Harvey P. Dale, Aug 31 2016 *)
Showing 1-4 of 4 results.
Comments