cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A054490 Expansion of (1+5*x)/(1-6*x+x^2).

Original entry on oeis.org

1, 11, 65, 379, 2209, 12875, 75041, 437371, 2549185, 14857739, 86597249, 504725755, 2941757281, 17145817931, 99933150305, 582453083899, 3394785353089, 19786259034635, 115322768854721, 672150354093691, 3917579355707425, 22833325780150859
Offset: 0

Views

Author

Barry E. Williams, May 04 2000

Keywords

Comments

A Pellian-related second-order recursive sequence.
Third binomial transform of 1,8,8,64,64,512. - Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009
Binomial transform of A164607. - R. J. Mathar, Oct 26 2011
Pisano period lengths: 1, 1, 4, 2, 6, 4, 3, 2, 12, 6, 12, 4, 14, 3, 12, 2, 8, 12, 20, 6, ... - R. J. Mathar, Aug 10 2012
From Wolfdieter Lang, Feb 26 2015: (Start)
This sequence gives all positive solutions x = x1 = a(n) of the first class of the (generalized) Pell equation x^2 - 2*y^2 = -7. For the corresponding y1 terms see 2*A038723(n). All positive solutions of the second class are given by (x2(n), y2(n)) = (A255236(n), A038725(n+1)), n >= 0. See (A254938(1), 2*A255232(1)) for the fundamental solution (1, 2) of the first class. See the Nagell reference, Theorem 111, p. 210, Theorem 110, p. 208, Theorem 108a, pp. 206-207.
This sequence also gives all positive solutions y = y1 of the first class of the Pell equation x^2 - 2*y^2 = 14. The corresponding solutions x1 are given in 4*A038723. This follows from the preceding comment. (End)
From Wolfdieter Lang, Mar 19 2015: (Start)
a(0) = -(2*A038761(0) - A038762(0)), a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1.
This follows from the general trivial fact that if X^2 - D*Y^2 = N (X, Y positive integers, D > 1, not a square, and N a non-vanishing integer) then x:= D*Y +/- X and y:= Y +/- X (correlated signs) satisfy x^2 - D*y^2 = -(D-1)*N. with integers x and y. Here D = 2 and N = 7. (End)

Examples

			n = 2: sqrt(8*23^2-7) = 65.
2*19 + 27  = 65. - _Wolfdieter Lang_, Mar 19 2015
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N. Y., 1964, pp. 122-125, 194-196.
  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

Programs

  • GAP
    a:=[1,11];; for n in [3..30] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 20 2020
  • Magma
    I:=[1,11]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
    
  • Maple
    a[0]:=1: a[1]:=11: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
  • Mathematica
    CoefficientList[Series[(1+5x)/(1-6x+x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{6, -1}, {1, 11}, 30] (* G. C. Greubel, Jul 26 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+5*x)/(1-6*x+x^2)) \\ G. C. Greubel, Jul 26 2018
    
  • Sage
    [lucas_number1(2*n+1,2,-1) + 3*lucas_number1(2*n,2,-1) for n in (0..30)] # G. C. Greubel, Jan 20 2020
    

Formula

a(n) = 6*a(n-1) - a(n-2) for n>1, a(0)=1, a(1)=11.
a(n) = sqrt(8*A038723(n)^2 - 7).
a(n) = (11*((3+2*sqrt(2))^n - (3-2*sqrt(2))^n) - ((3+2*sqrt(2))^(n-1) - (3-2*sqrt(2))^(n-1)))/(4*sqrt(2)).
a(n) = 11*S(n, 6) + 5*S(n-1, 6), n >= 0, with Chebyshev's polynomials S(n, x) (A049310) evaluated at x=6: S(n, 6) = A001109(n-1). See the g.f. and the Pell equation comments above. - Wolfdieter Lang, Feb 26 2015
a(n) = 2*A253811(n-1) + A101386(n-1), for n >= 1. See the Mar 19 2015 comment above. - Wolfdieter Lang, Mar 19 2015
From G. C. Greubel, Jan 20 2020: (Start)
a(n) = Pell(2*n+1) + 3*Pell(2*n).
a(n) = ChebyshevU(n,3) + 5*ChebyshevU(n-1,3).
E.g.f.: exp(3*x)*( cosh(2*sqrt(2)*x) + 2*sqrt(2)*sinh(2*sqrt(2)*x) ). (End)

Extensions

More terms from James Sellers, May 05 2000
More terms from Vincenzo Librandi, Mar 20 2015

A164683 a(n) = 8*a(n-2) for n > 2; a(1) = 1, a(2) = 8.

Original entry on oeis.org

1, 8, 8, 64, 64, 512, 512, 4096, 4096, 32768, 32768, 262144, 262144, 2097152, 2097152, 16777216, 16777216, 134217728, 134217728, 1073741824, 1073741824, 8589934592, 8589934592, 68719476736, 68719476736, 549755813888
Offset: 1

Views

Author

Klaus Brockhaus, Aug 22 2009

Keywords

Comments

Interleaving of A001018 and A001018 without initial term 1.
Binomial transform is A083100. Second binomial transform is A164607.

Crossrefs

Cf. A001018 (powers of 8), A083100, A164607.

Programs

  • Magma
    [ n le 2 select 7*n-6 else 8*Self(n-2): n in [1..26] ];
  • Mathematica
    With[{c=8^Range[0,15]},Riffle[c,c]]//Rest (* Harvey P. Dale, Aug 08 2017 *)

Formula

a(n) = 2^(1/4*(6*n-3+3*(-1)^n)).
G.f.: x*(1+8*x)/(1-8*x^2).

A154348 a(n) = 16*a(n-1) - 56*a(n-2) for n>1, with a(0)=1, a(1)=16.

Original entry on oeis.org

1, 16, 200, 2304, 25664, 281600, 3068416, 33325056, 361369600, 3915710464, 42414669824, 459354931200, 4974457389056, 53867442077696, 583309459456000, 6316374594945024, 68396663789584384, 740629643316428800
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jan 07 2009

Keywords

Comments

Third binomial transform of A164609, fourth binomial transform of A164608, fifth binomial transform of A054490, sixth binomial transform of A164607, seventh binomial transform of A083100, eighth binomial transform of A164683.
lim_{n -> infinity} a(n)/a(n-1) = 8 + 2*sqrt(2) = 10.8284271247....

Crossrefs

Cf. A002193 (decimal expansion of sqrt(2)), A164609, A164608, A054490, A164607, A083100, A164683.

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((8+2*r)^n-(8-2*r)^n)/(4*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jan 12 2009
  • Mathematica
    Join[{a=1,b=16},Table[c=16*b-56*a;a=b;b=c,{n,40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2011*)
    LinearRecurrence[{16,-56},{1,16},30] (* Harvey P. Dale, Aug 31 2016 *)

Formula

a(n) = 16*a(n-1) - 56*a(n-2) for n>1. - Philippe Deléham, Jan 12 2009
a(n) = ( (8 + 2*sqrt(2))^n - (8 - 2*sqrt(2))^n )/(4*sqrt(2)).
G.f.: 1/(1 - 16*x + 56*x^2). - Klaus Brockhaus, Jan 12 2009; corrected Oct 08 2009
E.g.f.: (1/(2*sqrt(2)))*exp(8*x)*sinh(2*sqrt(2)*x). - G. C. Greubel, Sep 13 2016

Extensions

Extended beyond a(7) by Klaus Brockhaus, Jan 12 2009
Edited by Klaus Brockhaus, Oct 08 2009
Offset corrected. - R. J. Mathar, Jun 19 2021
Showing 1-3 of 3 results.