cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061212 Erroneous version of A164883.

Original entry on oeis.org

1, 8, 474552, 27818127
Offset: 1

Views

Author

Keywords

A055012 Sum of cubes of the digits of n written in base 10.

Original entry on oeis.org

0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1, 2, 9, 28, 65, 126, 217, 344, 513, 730, 8, 9, 16, 35, 72, 133, 224, 351, 520, 737, 27, 28, 35, 54, 91, 152, 243, 370, 539, 756, 64, 65, 72, 91, 128, 189, 280, 407, 576, 793, 125, 126, 133, 152, 189, 250, 341, 468, 637, 854
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

For n > 1999, a(n) < n. The iteration of this map on n either stops at a fixed point (A046197) or has a period of 2 or 3: {55,250,133}, {136,244}, {160,217,352}, or {919,1459}. - T. D. Noe, Jul 17 2007
A165330 and A165331 give the final value and the number of steps when iterating until a fixed point or cycle is reached. - Reinhard Zumkeller, Sep 17 2009

Crossrefs

Cf. A046197 Fixed points; A046459: integers equal to the sum of the digits of their cubes; A072884: 3rd-order digital invariants: the sum of the cubes of the digits of n equals some number k and the sum of the cubes of the digits of k equals n; A164883: cubes with the property that the sum of the cubes of the digits is also a cube.

Programs

  • Magma
    [0] cat [&+[d^3: d in Intseq(n)]: n in [1..60]]; // Bruno Berselli, Feb 01 2013
    
  • Maple
    A055012 := proc(n)
            add(d^3,d=convert(n,base,10)) ;
    end proc: # R. J. Mathar, Dec 15 2011
  • Mathematica
    Total/@((IntegerDigits/@Range[0,60])^3) (* Harvey P. Dale, Jan 27 2012 *)
    Table[Sum[DigitCount[n][[i]] i^3, {i, 9}], {n, 0, 60}] (* Bruno Berselli, Feb 01 2013 *)
  • PARI
    A055012(n)=sum(i=1,#n=digits(n),n[i]^3) \\ Charles R Greathouse IV, Jul 01 2013
    
  • Python
    def a(n): return sum(map(lambda x: x*x*x, map(int, str(n))))
    print([a(n) for n in range(60)]) # Michael S. Branicky, Jul 13 2022

Formula

a(n) = Sum_{k>=1} (floor(n/10^k) - 10*floor(n/10^(k+1)))^3. - Hieronymus Fischer, Jun 25 2007
a(10n+k) = a(n) + k^3, 0 <= k < 10. - Hieronymus Fischer, Jun 25 2007
From Reinhard Zumkeller, Sep 17 2009: (Start)
a(n) <= 729*A055642(n);
a(A165370(n)) = n and a(m) <> n for m < A165370(n);
a(A031179(n)) = A031179(n);
a(a(A165336(n))) = A165336(n) or a(a(a(A165336(n)))) = A165336(n). (End)
G.f. g(x) = Sum_{k>=0} (1-x^(10^k))*(x^(10^k)+8*x^(2*10^k)+27*x^(3*10^k)+64*x^(4*10^k)+125*x^(5*10^k)+216*x^(6*10^k)+343*x^(7*10^k)+512*x^(8*10^k)+729*x^(9*10^k))/((1-x)*(1-x^(10^(k+1))))
satisfies
g(x) = (x+8*x^2+27*x^3+64*x^4+125*x^5+216*x^6+343*x^7+512*x^8+729*x^9)/(1-x^10) + (1-x^10)*g(x^10)/(1-x). - Robert Israel, Jan 26 2017

Extensions

Edited by M. F. Hasler, Apr 12 2015
Iséki and Stewart links added by Don Knuth, Sep 07 2015
Showing 1-2 of 2 results.