A164938 a(n) = (n^5 - n)/10, which is always an integer.
0, 3, 24, 102, 312, 777, 1680, 3276, 5904, 9999, 16104, 24882, 37128, 53781, 75936, 104856, 141984, 188955, 247608, 319998, 408408, 515361, 643632, 796260, 976560, 1188135, 1434888, 1721034, 2051112, 2429997, 2862912, 3355440, 3913536
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A061167.
Programs
-
Mathematica
Table[(n^5 - n)/10, {n, 1, 50}] (* Stefan Steinerberger, Sep 03 2009 *) LinearRecurrence[{6,-15,20,-15,6,-1},{0,3,24,102,312,777},50] (* Harvey P. Dale, Jan 14 2012 *)
Formula
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6. - Harvey P. Dale, Jan 14 2012
G.f.: (3*(x^3+2*x^2+x))/(x-1)^6. - Harvey P. Dale, Jan 14 2012
a(n) = A061167(n)/10. - Michel Marcus, Sep 04 2013
E.g.f.: exp(x)*x^2*(15 + 25*x + 10*x^2 + x^3)/10. - Stefano Spezia, Dec 27 2021
Extensions
More terms from Stefan Steinerberger, Sep 03 2009