cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208544 T(n,k) = Number of n-bead necklaces of k colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 0, 0, 5, 6, 1, 1, 0, 6, 10, 4, 6, 0, 0, 7, 15, 10, 21, 3, 1, 0, 8, 21, 20, 55, 24, 13, 0, 0, 9, 28, 35, 120, 102, 92, 9, 1, 0, 10, 36, 56, 231, 312, 430, 156, 30, 0, 0, 11, 45, 84, 406, 777, 1505, 1170, 498, 29, 1, 0, 12, 55, 120, 666, 1680, 4291, 5580, 4435
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Comments

Table starts
.1.2..3...4....5.....6......7......8.......9......10......11.......12.......13
.0.1..3...6...10....15.....21.....28......36......45......55.......66.......78
.0.0..1...4...10....20.....35.....56......84.....120.....165......220......286
.0.1..6..21...55...120....231....406.....666....1035....1540.....2211.....3081
.0.0..3..24..102...312....777...1680....3276....5904....9999....16104....24882
.0.1.13..92..430..1505...4291..10528...23052...46185...86185...151756...254618
.0.0..9.156.1170..5580..19995..58824..149796..341640..714285..1391940..2559414
.0.1.30.498.4435.25395.107331.365260.1058058.2707245.6278140.13442286.26942565

Examples

			All solutions for n=7, k=3:
..1....1....1....1....1....1....1....1....1
..2....2....2....2....2....2....2....2....2
..3....3....1....1....3....1....3....1....3
..1....1....2....2....1....2....2....3....2
..2....3....3....3....3....1....3....1....3
..3....1....1....2....2....2....2....2....1
..2....3....3....3....3....3....3....3....3
		

Crossrefs

Main diagonal is A208538.
Columns 3..7 are A208539, A208540, A208541, A208542, A208543.
Row 2 is A000217(n-1).
Row 3 is A000292(n-2).
Row 4 is A002817(n-1).
Row 5 is A164938(n-1).
Row 6 is A027670(n-1).

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k-1)^#&]/n + If[ OddQ[n], 1-k, k*(k-1)^(n/2)/2])/2]; Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 30 2017, after Andrew Howroyd *)
  • PARI
    T(n, k) = if(n==1, k, (sumdiv(n, d, eulerphi(n/d)*(k-1)^d)/n + if(n%2, 1-k, k*(k-1)^(n/2)/2))/2);
    for(n=1, 10, for(k=1, 10, print1(T(n, k), ", ")); print) \\ Andrew Howroyd, Oct 14 2017

Formula

T(2n+1,k) = A208535(2n+1,k)/2 for n > 0, T(2n,k) = (A208535(2n,k) + (k*(k-1)^n)/2)/2. - Andrew Howroyd, Mar 12 2017
Empirical for row n:
n=1: a(k) = k
n=2: a(k) = (1/2)*k^2 - (1/2)*k
n=3: a(k) = (1/6)*k^3 - (1/2)*k^2 + (1/3)*k
n=4: a(k) = (1/8)*k^4 - (1/4)*k^3 + (3/8)*k^2 - (1/4)*k
n=5: a(k) = (1/10)*k^5 - (1/2)*k^4 + k^3 - k^2 + (2/5)*k
n=6: a(k) = (1/12)*k^6 - (1/2)*k^5 + (3/2)*k^4 - (7/3)*k^3 + (23/12)*k^2 - (2/3)*k
n=7: a(k) = (1/14)*k^7 - (1/2)*k^6 + (3/2)*k^5 - (5/2)*k^4 + (5/2)*k^3 - (3/2)*k^2 + (3/7)*k

A288604 a(n) = (n^9 - n)/10.

Original entry on oeis.org

0, 51, 1968, 26214, 195312, 1007769, 4035360, 13421772, 38742048, 99999999, 235794768, 515978034, 1060449936, 2066104677, 3844335936, 6871947672, 11858787648, 19835929035, 32268769776, 51199999998, 79428004656, 120726921777, 180115266144, 264180754020
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n^9-n)/10,{n,30}] (* or *) LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{0,51,1968,26214,195312,1007769,4035360,13421772,38742048,99999999},30] (* Harvey P. Dale, Jun 11 2019 *)
  • PARI
    concat(0, Vec(3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10 + O(x^30))) \\ Colin Barker, Jun 11 2017
    
  • PARI
    a(n)=(n^9-n)/10 \\ Charles R Greathouse IV, Jun 11 2017

Formula

a(n) = (n^9 - n)/10 = A196289(n)/10.
G.f.: 3*x^2*(17 + 486*x + 2943*x^2 + 5204*x^3 + 2943*x^4 + 486*x^5 + 17*x^6) / (1 - x)^10. - Colin Barker, Jun 11 2017

A342112 Drop the final digit of n^5.

Original entry on oeis.org

0, 0, 3, 24, 102, 312, 777, 1680, 3276, 5904, 10000, 16105, 24883, 37129, 53782, 75937, 104857, 141985, 188956, 247609, 320000, 408410, 515363, 643634, 796262, 976562, 1188137, 1434890, 1721036, 2051114, 2430000, 2862915, 3355443, 3913539, 4543542, 5252187, 6046617
Offset: 0

Views

Author

Stefano Spezia, Feb 28 2021

Keywords

Comments

Why exponent 5? Because it is the smallest nontrivial exponent e such that for an integer k not ending in 0, 1, 5 and 6, k^e has the same unit digit of k in base 10.

Crossrefs

Programs

  • Mathematica
    Table[(n^5-Last[IntegerDigits[n]])/10,{n,0,36}]

Formula

G.f.: x^2*(3 + 9*x + 12*x^2 + 12*x^3 + 12*x^4 + 12*x^5 + 12*x^6 + 12*x^7 + 13*x^8 + 8*x^9 + 15*x^10 - x^11 + x^12)/((1 - x)^6*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9)).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + a(n-10) - 5*a(n-11) + 10*a(n-12) - 10*a(n-13) + 5*a(n-14) - a(n-15) for n > 14.
a(n) = floor(n^5/10).
a(n) = (A000584(n) - A010879(n))/10.
a(n) = A164938(n) + A059995(n).
Showing 1-3 of 3 results.