1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 21, 16, 1, 6, 25, 40, 57, 32, 1, 7, 36, 65, 136, 123, 52, 1, 8, 49, 96, 265, 304, 279, 100, 1, 9, 64, 133, 456, 605, 880, 549, 160, 1, 10, 81, 176, 721, 1056, 2125, 1768, 1209, 260, 1, 11, 100, 225, 1072, 1687, 4356, 4345, 4936, 2127, 424, 1
Offset: 1
Table starts:
1 2 3 4 5 6 7 8 9 10 ...
1 4 9 16 25 36 49 64 81 100 ...
1 8 21 40 65 96 133 176 225 280 ...
1 16 57 136 265 456 721 1072 1521 2080 ...
1 32 123 304 605 1056 1687 2528 3609 4960 ...
1 52 279 880 2125 4356 7987 13504 21465 32500 ...
1 100 549 1768 4345 9036 16765 28624 45873 69940 ...
1 160 1209 4936 14665 35736 75985 146224 260721 437680 ...
1 260 2127 9112 27965 69756 150955 294512 530937 899380 ...
1 424 4689 25216 93025 270936 670369 1471744 2948481 5494600 ...
From _Petros Hadjicostas_, Oct 27 2017: (Start)
We explain how to use the above formulae to find general expressions for some rows.
If p is an odd prime, then phi^{(-1)}(p) = 1-p. Since, also, phi^{(-1)}(1) = 1, we get T(p,k) = (1-p)*k+p*k^{(p+1)/2} for the p-th row above.
If m is a positive integer, then phi^{(-1)}(2^m) = -1, and so T(2^m,k) = 1+(k+1)*(2^{m-1}*k^{2^{m-1}}-1-Sum_{0<=s<=m-2} 2^s*k^{2^s}).
For example, if m=1, then T(2,k) = 1+(k+1)*(1*k-1-0) = k^2.
If m=2, then T(4,k) = 1+(k+1)*(2*k^2-1-k) = k*(2*k^2+k-2), which is the formula conjectured by C. Barker for sequence A187277 and verified by A. Howroyd.
(End)
A165610
The number of patterns of non-papaya words.
Original entry on oeis.org
0, 0, 1, 5, 31, 153, 778, 3890, 20693, 114733, 676347, 4207203, 27633048, 190864320, 1382896511, 10479940137, 82864510321, 682075572641, 5832740001550, 51724150291262, 474869801907015, 4506715684635739, 44152005758171637, 445958868912515927, 4638590331538888532
Offset: 1
The only three-character non-papaya pattern is abc - words with all distinct letters. Four-character non-papaya patterns are: aabc, abbc, abcc, abca, abcd.
-
R[k_?EvenQ] := (1/2)*k*(BellB[1 + k/2] + BellB[k/2]);
R[k_?OddQ] := k*BellB[1 + (k - 1)/2];
b[0] = 1; b[n_] := b[n] = R[n] - Sum[EulerPhi[n/d]*b[d], {d, Most[ Divisors[n]]}];
a[n_] := BellB[n] - b[n];
Array[a, 25] (* Jean-François Alcover, Jul 02 2018, after Andrew Howroyd *)
A165611
The number of n-digit non-papaya numbers.
Original entry on oeis.org
0, 0, 648, 7128, 85536, 870750, 8937054, 89606088, 899190558, 8995054860, 89990100090, 899940633714, 8999883000108, 89999307063540, 899998650010008, 8999992080398088, 89999984700000144, 899999910900869040, 8999999829000000162, 89999999010004961988
Offset: 1
A165136
a(n) is the number of patterns for n-digit papaya numbers.
Original entry on oeis.org
1, 2, 4, 10, 21, 50, 99, 250, 454, 1242, 2223, 6394, 11389, 35002, 62034, 202010, 359483, 1233518, 2203507, 7944100, 14249715, 53810836, 96911168, 382258438, 691048071, 2840120987, 5152403569, 22010733048, 40059670261, 177444599715
Offset: 1
There are two types of two-digit papaya numbers: aa, or ab. Hence a(2) = 2.
There are four types of three-digit papaya numbers: aaa, aab, aba, abb. Hence a(3) = 4.
There is no pattern of the form "abcdefghijkl" contributing to a(12), because this requires 12 different letters in the alphabet, and the standard numbers alphabet provides only ten different digits 0-9.
Keyword:base added, comment expanded -
R. J. Mathar, Aug 29 2010
Comments