cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A007055 Let S denote the palindromes in the language {0,1}*; a(n) = number of words of length n in the language SS.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 52, 100, 160, 260, 424, 684, 1036, 1640, 2552, 3728, 5920, 8672, 13408, 19420, 30136, 42736, 66840, 94164, 145900, 204632, 317776, 441764, 685232, 950216, 1469632, 2031556, 3139360, 4323888, 6675904, 9174400, 14139496, 19398584, 29864888, 40891040, 62882680, 85983152
Offset: 0

Views

Author

Keywords

Comments

Number of words in {0,1}* of length n that are rotations of their reversals. - David W. Wilson, Jan 01 2012
a(n) = sum of the orbit sizes of all achiral necklaces (or bracelets) under the action of the cyclic (or dihedral) group. - Mathieu Gagne, Jul 29 2025

Examples

			S = {e, 0, 1, 11, 101, 111, 1001, 1111, 10001, 10101, 11011, 11111, 100001, ...}, where e is the empty word.
SS contains all words in {0,1}* of length <= 5, but at length 6 is missing the 12 words { 001011, 001101, 010011, 010110, 011001, 011010, 100101, 100110, 101001, 101100, 110010, 110100 }.
In more detail: All words in SS of length 6 have one of the following 6 patterns: abccba, abbacc, aabccb, abcbad, abacdc, abcdcb. This gives a total of 3*(2^3 + 2^4) = 72 = A187272(n) words with some words being counted multiple times as follows: (x6): 000000, 111111; (x3): 010101, 101010; (x2): 001001, 010010, 011011, 100100, 101101, 110110. These are exactly the repetitions of shorter words in SS. Subtracting gives a(6) = 72 - 5*2 - 2*2 - 1*6 = 52.
For length n=7: All words in SS of length 7 have one of the following 7 patterns: abcdcba, abccbad, abcbadd, abbacdc, abacddc, aabcdcb, abcddcb. This gives a total of 7*2^4 = 112 = A187272(n) words with some words being counted multiple times. In particular, the words 0000000 and 1111111 are counted 7 times each so a(7) = 112 - 6*2 = 100. - Information about examples courtesy of _Andrew Howroyd_, Mar 30 2016
For n=6, there are 2 achiral necklaces with orbit size s=1, 1 with s=2, 2 with s=3, and 7 with s=6, giving a total of 2*1+1*2+2*3+7*6 = 52. - _Mathieu Gagne_, Jul 29 2025
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A284873.
For the nonempty words in the language S, see A057148 and A006995.

Programs

  • Maple
    # A023900:
    f:=proc(n) local t0,t1,t2; if n=1 then RETURN(1) else
    t0:=1; t1:=ifactors(n); t2:=t1[2]; for i from 1 to nops(t2) do t0:=t0*(1-t2[i][1]); od; RETURN(t0); fi; end;
    # A187272, A187273, A187274, A187275:
    R:=(a,n)->
    expand(simplify( (n/4)*a^(n/2)*( (1+sqrt(a))^2+ (-1)^n*(1-sqrt(a))^2 ) ));
    # A007055, A007056, A007057, A007058
    F:=(b,n)-> if n=0 then 1 else expand(simplify( add( f(d)*R(b,n/d),d in divisors(n) ) )); fi;
    # A007055:
    [seq(F(2,n),n=0..60)];
  • Mathematica
    A187272[n_] := A187272[n] = (n/4)*2^(n/2)*((1 + Sqrt[2])^2 + (-1)^n*(1 - Sqrt[2])^2) // Round;
    a[n_ /; n <= 5] := 2^n; a[n_] := a[n] = A187272[n] - Sum[n, EulerPhi[n/d] * a[d], {d, Most[Divisors[n]]}];
    Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Oct 08 2017, after Andrew Howroyd *)
    Table[Sum[s * Sum[MoebiusMu[s/d] If[EvenQ[d], 3*2^((d/2) - 1), 2^((d + 1)/2)] , {d, Divisors[s]}], {s, Divisors[n]}], {n, 1, 41}] (* Mathieu Gagne, Jul 29 2025 *)
  • Python
    from functools import lru_cache
    from sympy import totient, proper_divisors
    @lru_cache(maxsize=None)
    def A007055(n): return (n<<(n+1>>1) if n&1 else 3*n<<(n-2>>1))-sum(totient(n//d)*A007055(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 18 2024

Formula

a(n) = A187272(n) - Sum_{d|n, dAndrew Howroyd, Mar 29 2016
a(0)=1; a(n) = Sum_{s|n} s * A056493(s) for n>0. - Mathieu Gagne, Jul 29 2025
a(0)=1; a(n) = Sum_{s|n} s * (Sum_{d|s} mu(d) * A164090(s/d)) for n>0. - Mathieu Gagne, Jul 29 2025

Extensions

Entry revised by N. J. A. Sloane, Mar 07 2011

A284877 Irregular triangle T(n,k) for 1 <= k <= n/2 + 1: T(n,k) = number of double palindrome structures of length n using exactly k different symbols.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 7, 2, 1, 15, 5, 1, 25, 21, 3, 1, 49, 42, 7, 1, 79, 122, 44, 4, 1, 129, 225, 90, 9, 1, 211, 570, 375, 80, 5, 1, 341, 990, 715, 165, 11, 1, 517, 2321, 2487, 930, 132, 6, 1, 819, 3913, 4550, 1820, 273, 13, 1, 1275, 8827, 14350, 8330, 2009, 203, 7
Offset: 1

Views

Author

Andrew Howroyd, Apr 04 2017

Keywords

Comments

A double palindrome is the concatenation of two palindromes. Permuting the symbols will not change the structure. For the purposed of this sequence, valid palindromes include both the empty word and a singleton symbol.

Examples

			Triangle starts:
1
1     1
1     3
1     7      2
1    15      5
1    25     21       3
1    49     42       7
1    79    122      44       4
1   129    225      90       9
1   211    570     375      80       5
1   341    990     715     165      11
1   517   2321    2487     930     132      6
1   819   3913    4550    1820     273     13
1  1275   8827   14350    8330    2009    203      7
1  1863  14480   25515   15750    3990    420     15
1  2959  31802   75724   64004   23296   3920    296     8
1  4335  51425  132090  118167   44982   7854    612    17
1  6703 110928  376779  445275  229257  57078   7074   414   9
1  9709 177270  647995  807975  433713 111720  14250   855  19
1 15067 377722 1798175 2892470 2023135 698670 126300 12000 560 10
....
The first few structures are:
n = 1: a => 1
n = 2: aa; ab => 1 + 1
n = 3: aaa; aab, aba, abb => 1 + 3
n = 4: aaaa; aaab, aaba, aabb, abaa, abab, abba, abbb; abac, abcb => 1 + 7 + 2
		

Crossrefs

Columns k=2..4 are A328688, A328689, A328690.
Row sums are A165137.
Partial row sums include A180249, A328692, A328693.

Programs

  • Mathematica
    r[d_, k_]:=If[OddQ[d], d*k^((d + 1)/2), (d/2)*(k + 1)*k^(d/2)]; a[n_, k_]:= r[n, k] - Sum[If[dIndranil Ghosh, Apr 07 2017 *)
  • PARI
    r(d,k)=if (d % 2 == 0, (d/2)*(stirling(d/2,k,2)+stirling(d/2+1,k,2)), d*stirling((d+1)/2, k,2));
    a(n,k) = r(n,k) - sumdiv(n,d, if (d
    				
  • Python
    from sympy import totient, divisors, binomial, factorial
    def r(d, k): return (d//2)*(k + 1)*k**(d//2) if d%2 == 0 else d*k**((d + 1)//2)
    def a(n, k): return r(n, k) - sum([totient(n//d)*a(d, k) for d in divisors(n) if dIndranil Ghosh, Apr 07 2017

Formula

T(n, k) = (Sum_{j=0..k} (-1)^j * binomial(k, j) * A284873(n, k-j)) / k!.
T(n, k) = r(n, k) - Sum_{d|n, d

A007056 Let S denote the palindromes in the language {0,1,2}*; a(n) = number of words of length n in the language SS.

Original entry on oeis.org

1, 3, 9, 21, 57, 123, 279, 549, 1209, 2127, 4689, 7989, 17031, 28395, 60615, 98061, 208569, 334563, 705789, 1121877, 2356737, 3718827, 7786359, 12223077, 25488903, 39857523, 82876257, 129135729, 267784119, 416118219, 860825439, 1334448261, 2754778809, 4261609131, 8781196329, 13559714109, 27893530029
Offset: 0

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A284873.

Programs

  • Maple
    See A007055.
  • Python
    from functools import lru_cache
    from sympy import totient, proper_divisors
    @lru_cache(maxsize=None)
    def A007056(n): return (n*3**(1+(n>>1)) if n&1 else (n<<1)*3**(n>>1))-sum(totient(n//d)*A007056(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024

Formula

a(n) = A187273(n) - Sum_{d|n,dSean A. Irvine, Sep 27 2017

Extensions

Entry revised by N. J. A. Sloane, Mar 07 2011

A007057 Let S denote the palindromes in the language {0,1,2,3}*; a(n) = number of words of length n in the language SS.

Original entry on oeis.org

1, 4, 16, 40, 136, 304, 880, 1768, 4936, 9112, 25216, 45016, 121600, 212944, 571552, 982240, 2616136, 4456384, 11785408, 19922872, 52402336, 88076560, 230641504, 385875880, 1006499200, 1677720304, 4361862976, 7247738776, 18789905872, 31138512784, 80529599680, 133143986056, 343594756936
Offset: 0

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 4 of A284873.

Programs

  • Maple
    See A007055.
  • Python
    from functools import lru_cache
    from sympy import totient, proper_divisors
    @lru_cache(maxsize=None)
    def A007057(n): return (n<>1)<A007057(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024

Formula

a(n) = A187274(n) - Sum_{d|n,dSean A. Irvine, Sep 27 2017

Extensions

Entry revised by N. J. A. Sloane, Mar 07 2011

A007058 Let S denote the palindromes in the language {0,1,2,3,4}*; a(n) = number of words of length n in the language SS.

Original entry on oeis.org

1, 5, 25, 65, 265, 605, 2125, 4345, 14665, 27965, 93025, 171825, 559645, 1015565, 3276725, 5857865, 18734665, 33203045, 105436225, 185546785, 585842065, 1025381485, 3222484125, 5615234265, 17577530845, 30517575605, 95213827825, 164794865465, 512692025285, 885009765485, 2746575977125
Offset: 0

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 5 of A284873.

Programs

  • Maple
    See A007055.
  • Python
    from functools import lru_cache
    from sympy import totient, proper_divisors
    @lru_cache(maxsize=None)
    def A007058(n): return (n*5**(1+(n>>1)) if n&1 else 3*n*5**(n>>1))-sum(totient(n//d)*A007058(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024

Formula

a(n) = A187275(n) - Sum_{d|n,dSean A. Irvine, Sep 27 2017

Extensions

Entry revised by N. J. A. Sloane, Mar 07 2011

A187277 Let S denote the palindromes in the language {0,1,2,...,n-1}*; a(n) = number of words of length 4 in the language SS.

Original entry on oeis.org

1, 16, 57, 136, 265, 456, 721, 1072, 1521, 2080, 2761, 3576, 4537, 5656, 6945, 8416, 10081, 11952, 14041, 16360, 18921, 21736, 24817, 28176, 31825, 35776, 40041, 44632, 49561, 54840, 60481, 66496, 72897, 79696, 86905, 94536, 102601, 111112, 120081, 129520, 139441, 149856, 160777, 172216, 184185
Offset: 1

Author

N. J. A. Sloane, Mar 07 2011

Keywords

Crossrefs

Row 4 of A284873.

Programs

  • Magma
    [2*n^3 + n^2 - 2*n: n in [1..50]]; // G. C. Greubel, Jul 25 2018
    
  • Maple
    Using the Maple code from A007055: [seq(F(b,4),b=1..50)];
  • Mathematica
    Array[# (2 #^2 + # - 2) &, 45] (* or *)
    Rest@ CoefficientList[Series[-x (x^2 - 12 x - 1)/(x - 1)^4, {x, 0, 45}], x] (* Michael De Vlieger, Oct 10 2017 *)
  • PARI
    a(n) = 2*n^3 + n^2 - 2*n; \\ Andrew Howroyd, Oct 10 2017
    
  • Python
    def A187277(n): return n*(n*((n<<1)|1)-2) # Chai Wah Wu, Feb 19 2024

Formula

From Colin Barker, Jul 24 2013: (Start) (Conjectured formulas; later proven)
a(n) = n*(2*n^2 +n -2).
G.f.: x*(1 +12*x - x^2)/(x-1)^4. (End)
The above conjecture is true: A284873(4, n) evaluates to the same polynomial. - Andrew Howroyd, Oct 10 2017

A271532 a(n) = (-1)^n*(n + 1)*(5*n^2 + 10*n + 1).

Original entry on oeis.org

1, -32, 123, -304, 605, -1056, 1687, -2528, 3609, -4960, 6611, -8592, 10933, -13664, 16815, -20416, 24497, -29088, 34219, -39920, 46221, -53152, 60743, -69024, 78025, -87776, 98307, -109648, 121829, -134880, 148831, -163712, 179553, -196384, 214235, -233136, 253117, -274208, 296439
Offset: 0

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Alternating sum of centered dodecahedral numbers (A005904).
Without signs and up to offset, this is row 5 of the array A284873. - Andrey Zabolotskiy, Oct 10 2017

Programs

  • Mathematica
    Table[(-1)^n (n + 1) (5 n^2 + 10 n + 1), {n, 0, 38}]
    LinearRecurrence[{-4, -6, -4, -1}, {1, -32, 123, -304}, 39]
  • PARI
    a(n)=(-1)^n*(n+1)*(5*n^2+10*n+1) \\ Charles R Greathouse IV, Jul 26 2016
  • Python
    for n in range(0,10**3):print((-1)**n*(n+1)*(5*n**2+10*n+1)) # Soumil Mandal, Apr 10 2016
    

Formula

G.f.: (1 - 28*x + x^2)/(1 + x)^4.
E.g.f.: exp(-x)*(1 - 31*x + 30*x^2 - 5*x^3).
a(n) = -4*a(n-1) - 6*a(n-2) - 4*a(n-3) - a(n-4).
Showing 1-7 of 7 results.