1, 2, 1, 3, 4, 1, 4, 9, 8, 1, 5, 16, 21, 16, 1, 6, 25, 40, 57, 32, 1, 7, 36, 65, 136, 123, 52, 1, 8, 49, 96, 265, 304, 279, 100, 1, 9, 64, 133, 456, 605, 880, 549, 160, 1, 10, 81, 176, 721, 1056, 2125, 1768, 1209, 260, 1, 11, 100, 225, 1072, 1687, 4356, 4345, 4936, 2127, 424, 1
Offset: 1
Table starts:
1 2 3 4 5 6 7 8 9 10 ...
1 4 9 16 25 36 49 64 81 100 ...
1 8 21 40 65 96 133 176 225 280 ...
1 16 57 136 265 456 721 1072 1521 2080 ...
1 32 123 304 605 1056 1687 2528 3609 4960 ...
1 52 279 880 2125 4356 7987 13504 21465 32500 ...
1 100 549 1768 4345 9036 16765 28624 45873 69940 ...
1 160 1209 4936 14665 35736 75985 146224 260721 437680 ...
1 260 2127 9112 27965 69756 150955 294512 530937 899380 ...
1 424 4689 25216 93025 270936 670369 1471744 2948481 5494600 ...
From _Petros Hadjicostas_, Oct 27 2017: (Start)
We explain how to use the above formulae to find general expressions for some rows.
If p is an odd prime, then phi^{(-1)}(p) = 1-p. Since, also, phi^{(-1)}(1) = 1, we get T(p,k) = (1-p)*k+p*k^{(p+1)/2} for the p-th row above.
If m is a positive integer, then phi^{(-1)}(2^m) = -1, and so T(2^m,k) = 1+(k+1)*(2^{m-1}*k^{2^{m-1}}-1-Sum_{0<=s<=m-2} 2^s*k^{2^s}).
For example, if m=1, then T(2,k) = 1+(k+1)*(1*k-1-0) = k^2.
If m=2, then T(4,k) = 1+(k+1)*(2*k^2-1-k) = k*(2*k^2+k-2), which is the formula conjectured by C. Barker for sequence A187277 and verified by A. Howroyd.
(End)
A165135
The number of n-digit positive papaya numbers.
Original entry on oeis.org
9, 90, 252, 1872, 4464, 29250, 62946, 393912, 809442, 4945140, 9899910, 59366286, 116999892, 692936460, 1349989992, 7919601912, 15299999856, 89099130960, 170999999838, 989995038012, 1889999872488, 10889990099100, 20699999999802, 118799939782206, 224999999981964
Offset: 1
Three-digit papaya numbers are of four types: aaa (total of 9) and aab, aba, abb, (total of 81 for each). Hence a(3) = 252.
-
R(n,b)=if(n%2==0, n/2*(b+1)*b^(n/2), n*b^((n+1)/2));
a(n) = 9*R(n,10)/10 - sumdiv(n, d, if(n<>d, eulerphi(n/d)*a(d))); \\ Andrew Howroyd, Oct 14 2017
-
from functools import lru_cache
from sympy import totient, proper_divisors
@lru_cache(maxsize=None)
def A165135(n): return 9*(n*10**(n>>1) if n&1 else 11*(a:=n>>1)*10**(a-1))-sum(totient(n//d)*A165135(d) for d in proper_divisors(n,generator=True)) # Chai Wah Wu, Feb 19 2024
A187272
a(n) = (n/4)*2^(n/2)*((1+sqrt(2))^2 + (-1)^n*(1-sqrt(2))^2).
Original entry on oeis.org
0, 2, 6, 12, 24, 40, 72, 112, 192, 288, 480, 704, 1152, 1664, 2688, 3840, 6144, 8704, 13824, 19456, 30720, 43008, 67584, 94208, 147456, 204800, 319488, 442368, 688128, 950272, 1474560, 2031616, 3145728, 4325376, 6684672, 9175040, 14155776, 19398656, 29884416, 40894464, 62914560, 85983232
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. Kemp, On the number of words in the language {w in Sigma* | w = w^R }^2, Discrete Math., 40 (1982), 225-234. See Lemma 6 (p. 228).
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-4).
-
[Round((n/4)*2^(n/2)*((1+Sqrt(2))^2 + (-1)^n*(1-Sqrt(2))^2)): n in [0..30]]; // G. C. Greubel, Nov 28 2017
-
R:=(b,n)-> expand(simplify( (n/4)*b^(n/2)*((1+sqrt(b))^2+(-1)^n*(1-sqrt(b))^2) ));
[seq(R(2,n),n=0..100)];
-
CoefficientList[Series[2 x (1 + x) (1 + 2 x) / (1 - 2 x^2)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
-
x='x+O('x^30); concat([0], Vec(2*x*(1+x)*(1+2*x)/(1-2*x^2)^2)) \\ G. C. Greubel, Nov 28 2017
-
def A187272(n): return (n<<(n+1>>1) if n&1 else 3*n<<(n-2>>1)) if n else 0 # Chai Wah Wu, Feb 18 2024
A007056
Let S denote the palindromes in the language {0,1,2}*; a(n) = number of words of length n in the language SS.
Original entry on oeis.org
1, 3, 9, 21, 57, 123, 279, 549, 1209, 2127, 4689, 7989, 17031, 28395, 60615, 98061, 208569, 334563, 705789, 1121877, 2356737, 3718827, 7786359, 12223077, 25488903, 39857523, 82876257, 129135729, 267784119, 416118219, 860825439, 1334448261, 2754778809, 4261609131, 8781196329, 13559714109, 27893530029
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
See A007055.
-
from functools import lru_cache
from sympy import totient, proper_divisors
@lru_cache(maxsize=None)
def A007056(n): return (n*3**(1+(n>>1)) if n&1 else (n<<1)*3**(n>>1))-sum(totient(n//d)*A007056(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024
A007057
Let S denote the palindromes in the language {0,1,2,3}*; a(n) = number of words of length n in the language SS.
Original entry on oeis.org
1, 4, 16, 40, 136, 304, 880, 1768, 4936, 9112, 25216, 45016, 121600, 212944, 571552, 982240, 2616136, 4456384, 11785408, 19922872, 52402336, 88076560, 230641504, 385875880, 1006499200, 1677720304, 4361862976, 7247738776, 18789905872, 31138512784, 80529599680, 133143986056, 343594756936
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
See A007055.
-
from functools import lru_cache
from sympy import totient, proper_divisors
@lru_cache(maxsize=None)
def A007057(n): return (n<>1)<A007057(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024
A007058
Let S denote the palindromes in the language {0,1,2,3,4}*; a(n) = number of words of length n in the language SS.
Original entry on oeis.org
1, 5, 25, 65, 265, 605, 2125, 4345, 14665, 27965, 93025, 171825, 559645, 1015565, 3276725, 5857865, 18734665, 33203045, 105436225, 185546785, 585842065, 1025381485, 3222484125, 5615234265, 17577530845, 30517575605, 95213827825, 164794865465, 512692025285, 885009765485, 2746575977125
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
See A007055.
-
from functools import lru_cache
from sympy import totient, proper_divisors
@lru_cache(maxsize=None)
def A007058(n): return (n*5**(1+(n>>1)) if n&1 else 3*n*5**(n>>1))-sum(totient(n//d)*A007058(d) for d in proper_divisors(n,generator=True)) if n else 1 # Chai Wah Wu, Feb 19 2024
A187277
Let S denote the palindromes in the language {0,1,2,...,n-1}*; a(n) = number of words of length 4 in the language SS.
Original entry on oeis.org
1, 16, 57, 136, 265, 456, 721, 1072, 1521, 2080, 2761, 3576, 4537, 5656, 6945, 8416, 10081, 11952, 14041, 16360, 18921, 21736, 24817, 28176, 31825, 35776, 40041, 44632, 49561, 54840, 60481, 66496, 72897, 79696, 86905, 94536, 102601, 111112, 120081, 129520, 139441, 149856, 160777, 172216, 184185
Offset: 1
-
[2*n^3 + n^2 - 2*n: n in [1..50]]; // G. C. Greubel, Jul 25 2018
-
Using the Maple code from A007055: [seq(F(b,4),b=1..50)];
-
Array[# (2 #^2 + # - 2) &, 45] (* or *)
Rest@ CoefficientList[Series[-x (x^2 - 12 x - 1)/(x - 1)^4, {x, 0, 45}], x] (* Michael De Vlieger, Oct 10 2017 *)
-
a(n) = 2*n^3 + n^2 - 2*n; \\ Andrew Howroyd, Oct 10 2017
-
def A187277(n): return n*(n*((n<<1)|1)-2) # Chai Wah Wu, Feb 19 2024
A370410
Number of length-n binary strings that are the concatenation of two nonempty palindromes.
Original entry on oeis.org
0, 4, 6, 14, 26, 48, 86, 148, 232, 400, 622, 982, 1514, 2440, 3482, 5680, 8162, 12932, 18398, 29146, 40706, 64856, 90070, 141880, 196448, 309712, 425412, 668978, 917450, 1437148, 1966022, 3074080, 4192882, 6545344, 8912278, 13877920, 18874298, 29341624, 39842594, 61835140, 83886002, 129977116, 176160686, 272563362
Offset: 1
-
# see below and Links for faster programs
from itertools import product
def p(w): return w == w[::-1]
def c(w): return any(p(w[:i]) and p(w[i:]) for i in range(1, len(w)))
def a(n): return 2*sum(1 for w in product("01", repeat=n-1) if c(("1",)+w))
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 18 2024
-
from itertools import product
def bin_pals(d): yield from ("".join(p+(m,)+p[::-1]) for p in product("01", repeat=d//2) for m in [[""], ["0", "1"]][d%2])
def a(n): return len(set(a+b for i in range(1, n) for a in bin_pals(i) for b in bin_pals(n-i)))
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Feb 18 2024
-
# uses formula above; functions/imports in A007055, A056458
def a(n): return A007055(n) - A056458(n)
print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Feb 21 2024
Comments