A165157 Zero followed by partial sums of A133622.
0, 1, 3, 4, 7, 8, 12, 13, 18, 19, 25, 26, 33, 34, 42, 43, 52, 53, 63, 64, 75, 76, 88, 89, 102, 103, 117, 118, 133, 134, 150, 151, 168, 169, 187, 188, 207, 208, 228, 229, 250, 251, 273, 274, 297, 298, 322, 323, 348, 349, 375, 376, 403, 404, 432, 433, 462, 463, 493, 494, 525
Offset: 0
Examples
From _Stefano Spezia_, Jul 10 2020: (Start) Illustration of the initial terms for n > 0: o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o (1) (3) (4) (7) (8) (12) (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Haskell
a165157 n = a165157_list !! n a165157_list = scanl (+) 0 a133622_list -- Reinhard Zumkeller, Feb 20 2015
-
Magma
m:=60; T:=[ 1+(1+(-1)^n)*n/4: n in [1..m] ]; [0] cat [ n eq 1 select T[1] else Self(n-1)+T[n]: n in [1..m] ]; // Klaus Brockhaus, Sep 06 2009
-
Magma
[ n le 2 select n-1 else n le 4 select n else 2*Self(n-2)-Self(n-4)+1: n in [1..61] ]; // Klaus Brockhaus, Sep 06 2009
Formula
a(0) = 0, a(2*n) = a(2*n-1) + n + 1, a(2*n+1) = a(2*n) + 1.
a(n) = (n^2+10*n)/8 if n is even, a(n) = (n^2+8*n-1)/8 if n is odd.
a(n) = 2*a(n-2)-a(n-4)+1 for n > 3; a(0)=0, a(1)=1, a(2)=3, a(3)=4. - Klaus Brockhaus, Sep 06 2009
a(n) = (2*n*(n+9)-1+(2*n+1)*(-1)^n)/16. - Klaus Brockhaus, Sep 06 2009
a(n) = n+binomial(1+floor(n/2),2). - Mircea Merca, Feb 18 2012
G.f.: x*(1+2*x-x^2-x^3)/((1-x)^3*(1+x)^2). - Klaus Brockhaus, Sep 06 2009
From Stefano Spezia, Jul 10 2020: (Start)
E.g.f.: (x*(9 + x)*cosh(x) + (-1 + 11*x + x^2)*sinh(x))/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4. (End)
Extensions
Edited and extended by Klaus Brockhaus, Sep 06 2009
Comments