cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A165292 Primes obtained from other primes by pre-concatenating with 3.

Original entry on oeis.org

37, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 3109, 3137, 3163, 3167, 3181, 3191, 3229, 3251, 3257, 3271, 3307, 3313, 3331, 3347, 3359, 3373, 3389, 3433, 3449, 3457, 3461, 3463, 3467, 3491, 3499, 3541, 3547, 3557, 3571, 3593
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 13 2009

Keywords

Comments

The primes are considered in increasing order. These primes are obtained by adding 30, 300, 3000, ... to other primes.

Examples

			The prime 3389 is obtained from the prime 389 by pre-concatenating with 3.
		

Crossrefs

Programs

  • Mathematica
    Select[(FromDigits[Join[{3},IntegerDigits[#]]]&/@Prime[Range[200]]),PrimeQ]  (* Harvey P. Dale, Mar 04 2011 *)

Extensions

359 inserted by R. J. Mathar, Sep 21 2009

A165555 Primes obtained from other primes by prefixing a 5.

Original entry on oeis.org

53, 523, 541, 547, 571, 5101, 5107, 5113, 5167, 5179, 5197, 5227, 5233, 5281, 5347, 5419, 5431, 5443, 5449, 5479, 5503, 5521, 5557, 5563, 5569, 5641, 5647, 5653, 5659, 5683, 5701, 5743, 5821, 5827, 5839, 5857, 5881, 5953, 51031, 51061, 51109, 51151, 51193, 51217
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 21 2009

Keywords

Comments

The primes are considered in increasing order. Primes with the same number of digits, the difference between adjacent terms seems to be a multiple of 3.

Examples

			5479 is a prime obtained by prefixing a 5 to the prime 479.
		

Crossrefs

Programs

  • Magma
    [k : p in PrimesUpTo (2000) | IsPrime (k) where k is Seqint (Intseq (p) cat Intseq (5))]; // K. D. Bajpai, Jul 14 2017
    
  • Maple
    A165555:= n-> (parse(cat(5,ithprime(n)))): select(isprime, [seq((A165555(n), n=1..1000))]); # K. D. Bajpai, Jul 14 2017
  • Mathematica
    Select[Table[FromDigits[Join[IntegerDigits[5], IntegerDigits[Prime[n]]]], {n, 500}], PrimeQ] (*K. D. Bajpai, Jul 14 2017 *)
    Select[5*10^IntegerLength[#]+#&/@Prime[Range[200]],PrimeQ] (* Harvey P. Dale, Sep 29 2024 *)
  • PARI
    lista(nn) = forprime(p=2, nn, if (isprime(q=eval(concat(5, Str(p)))), print1(q, ", "))); \\ Michel Marcus, Jul 29 2017

Extensions

More terms from Vincenzo Librandi, Dec 02 2010
Missing term 5449 inserted by K. D. Bajpai, Jul 14 2017

A167187 Primes obtained from other primes by prefixing a 7.

Original entry on oeis.org

73, 719, 743, 761, 773, 797, 7103, 7109, 7127, 7151, 7193, 7211, 7229, 7283, 7307, 7331, 7349, 7433, 7457, 7487, 7499, 7523, 7541, 7547, 7577, 7607, 7643, 7673, 7691, 7727, 7757, 7823, 7829, 7853, 7877, 7883, 7907, 7919, 7937, 71039, 71069, 71129, 71153
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 29 2009

Keywords

Examples

			7151 is a prime obtained by prefixing a 7 to the prime 151.
		

Crossrefs

Programs

  • Mathematica
    Select[FromDigits[Join[{7},IntegerDigits[#]]]&/@Prime[Range[250]],PrimeQ] (* Harvey P. Dale, Aug 08 2014 *)

Extensions

a(11)-a(42) from Vincenzo Librandi, Nov 01 2009
Corrected (a(15)=7307 inserted) by Harvey P. Dale, Aug 08 2014

A165444 Primes obtained from other primes by prefixing a 4.

Original entry on oeis.org

43, 47, 419, 431, 443, 461, 467, 479, 4127, 4139, 4157, 4211, 4229, 4241, 4271, 4283, 4337, 4349, 4373, 4397, 4409, 4421, 4457, 4463, 4523, 4547, 4643, 4673, 4691, 4733, 4751, 4787, 4877, 4919, 4937, 4967, 41039, 41051, 41117, 41201, 41213, 41231, 41381, 41399
Offset: 1

Views

Author

Parthasarathy Nambi, Sep 19 2009

Keywords

Examples

			4547 is a prime obtained by prefixing a 4 to the prime 547.
		

Crossrefs

Programs

  • Mathematica
    Select[4*10^IntegerLength[#]+#&/@Prime[Range[300]],PrimeQ] (* Harvey P. Dale, Mar 25 2016 *)

Extensions

More terms from Vincenzo Librandi, Sep 20 2009

A289866 Primes obtained from other primes by prefixing a 1.

Original entry on oeis.org

13, 17, 113, 131, 137, 167, 173, 179, 197, 1103, 1109, 1151, 1163, 1181, 1193, 1223, 1229, 1277, 1283, 1307, 1367, 1373, 1409, 1433, 1439, 1487, 1499, 1523, 1571, 1601, 1607, 1613, 1619, 1709, 1733, 1787, 1811, 1823, 1877, 1907, 1997, 11069, 11087, 11093
Offset: 1

Views

Author

Vincenzo Librandi, Jul 14 2017

Keywords

Examples

			131 is a term because it is a prime obtained by prefixing a 1 to the prime 31.
1409 is a term because it is a prime obtained by prefixing a 1 to the prime 409.
		

Crossrefs

Cf. A039790 (primes prefixed by 1).
Cf. primes obtained from other primes by prefixing a k: this sequence (k=1), A165243 (k=2), A165292 (k=3), A165444 (k=4), A165555 (k=5), A289867 (k=6), A167187 (k=7), A290407 (k=8).

Programs

  • Magma
    [k: p in PrimesUpTo(1500) | IsPrime(k) where k is Seqint(Intseq(p) cat [1])];
  • Mathematica
    Select[Table[FromDigits[Join[IntegerDigits[1], IntegerDigits[Prime[n]]]], {n, 300}], PrimeQ]
    Select[Table[10^IntegerLength[p]+p,{p,Prime[Range[200]]}],PrimeQ] (* Harvey P. Dale, Oct 17 2021 *)

A327918 The 16 pure prime dates of each non-leap year of the form concatenate(month,day) with month and day also prime numbers.

Original entry on oeis.org

23, 211, 223, 37, 311, 313, 317, 331, 53, 523, 73, 719, 113, 1117, 1123, 1129
Offset: 1

Views

Author

Wolfdieter Lang, Oct 08 2019

Keywords

Comments

For the numbers for leap years see A327919.
Only the months February (2), March (3), May (5), July (7) and November (11) qualify. The qualifying prime days are for month m=2: 3, 5, 7, 11, 13, 17, 19, 23; for month m = 11: 3, 5, 7, 11, 13, 17, 19, 23, 29 and for months m = 3, 5, and 7: 3, 5, 7, 11, 13, 17, 19, 23, 29, 31.
The months m = 2, 3, 5, 7, 11 contribute 3, 5, 2, 2, 4 days, respectively, adding to 16.

Crossrefs

Cf. A165243 (first three terms), A165292 (first five terms), A165555 (first two terms), A167187 (first two terms), A327348 (m and d nonprime allowed), A327914 (with 0 before d = 1..9), A327919 (leap year), A327920 (pure prime dates of d.m form).

A327919 The 17 pure prime dates of each leap year of the form concatenate(month,day) with month and day also prime numbers.

Original entry on oeis.org

23, 211, 223, 229, 37, 311, 313, 317, 331, 53, 523, 73, 719, 113, 1117, 1123, 1129
Offset: 1

Views

Author

Wolfdieter Lang, Oct 08 2019

Keywords

Comments

For the non-leap case see A327918.
The months m = 2, 3, 5, 7, 11 contribute 4, 5, 2, 2, 4 days, respectively, adding to 17.

Crossrefs

Cf. A165243 (first four terms), A165292 (first five terms), A165555 (first two terms), A167187 (first two terms), A327349 (m and d nonprime allowed), A327915 (with 0 before d = 1..9), A327918 (non-leap year case), A327920 (pure prime dates of d.m form).
Showing 1-7 of 7 results.