cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165248 Quintisection A061037(5*n+2).

Original entry on oeis.org

0, 45, 35, 285, 30, 725, 255, 1365, 110, 2205, 675, 3245, 240, 4485, 1295, 5925, 420, 7565, 2115, 9405, 650, 11445, 3135, 13685, 930, 16125, 4355, 18765, 1260, 21605, 5775, 24645, 1640, 27885, 7395, 31325, 2070, 34965, 9215, 38805, 2550, 42845, 11235, 47085
Offset: 0

Views

Author

Paul Curtz, Sep 10 2009

Keywords

Comments

A trisection of A061037 is in A142590. These (2k+1)-sections A061037(2+n*(2k+1)) are multiples of 2k+1.

Programs

  • Magma
    m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(5*x*(9 + 7*x + 57*x^2 + 6*x^3 + 118*x^4 + 30*x^5 + 102*x^6 + 4*x^7 + 33*x^8 + 3*x^9 + x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))); // G. C. Greubel, Sep 19 2018
  • Mathematica
    CoefficientList[Series[5*x*(9 + 7*x + 57*x^2 + 6*x^3 + 118*x^4 + 30*x^5 + 102*x^6 +4*x^7 + 33*x^8 + 3*x^9 +x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3), {x, 0, 50}], x] (* G. C. Greubel, Sep 19 2018 *)
    LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,45,35,285,30,725,255,1365,110,2205,675,3245},50] (* Harvey P. Dale, Sep 18 2021 *)
  • PARI
    a(n) = numerator(1/4 - 1/(5*n+2)^2); \\ Altug Alkan, Apr 19 2016
    
  • PARI
    x='x+O('x^50); concat([0], Vec(5*x*(9 + 7*x + 57*x^2 + 6*x^3 + 118*x^4 + 30*x^5 + 102*x^6 + 4*x^7 + 33*x^8 + 3*x^9 + x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3))) \\ G. C. Greubel, Sep 19 2018
    

Formula

Conjecture: a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12), n>11. - R. J. Mathar, Mar 02 2010
The conjecture is equivalent to a(4n) = 5n*(5n+1), a(4n+1) = 5*(20n+9)*(4n+1), a(4n+2) = 5*(10n+7)*(2n+1) and a(4n+3) = 5*(20n+19)*(4n+3). - R. J. Mathar, Feb 13 2011
The conjectures can be proved by taking the closed form of A061037, and writing up the quadrisections case by case. - Bruno Berselli, Feb 20 2011
From Ilya Gutkovskiy, Apr 19 2016: (Start)
G.f.: 5*x*(9 + 7*x + 57*x^2 + 6*x^3 + 118*x^4 + 30*x^5 + 102*x^6 + 4*x^7 + 33*x^8 + 3*x^9 + x^10)/((1 - x)^3*(1 + x)^3*(1 + x^2)^3).
a(n) = -5*n (5*n + 4)*(27*(-1)^n + 6*cos((Pi*n)/2) - 37)/64. (End)

Extensions

Extended by R. J. Mathar, Mar 02 2010