A165351 Numerator of 3*n/2.
0, 3, 3, 9, 6, 15, 9, 21, 12, 27, 15, 33, 18, 39, 21, 45, 24, 51, 27, 57, 30, 63, 33, 69, 36, 75, 39, 81, 42, 87, 45, 93, 48, 99, 51, 105, 54, 111, 57, 117, 60, 123, 63, 129, 66, 135, 69, 141, 72, 147, 75, 153, 78, 159, 81, 165, 84, 171, 87, 177, 90, 183, 93, 189, 96, 195
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Programs
-
Magma
[Numerator(3*n/2): n in [0..100]]; // Vincenzo Librandi, Mar 03 2014
-
Maple
A165351:=n->numer(3*n/2); seq(A165351(k), k=0..100); # Wesley Ivan Hurt, Oct 11 2013
-
Mathematica
Table[Numerator[3n/2], {n, 0, 100}] (* Wesley Ivan Hurt, Oct 11 2013 *) CoefficientList[Series[3*x*(1+x+x^2)/(1-x^2)^2, {x, 0, 70}], x] (* Vincenzo Librandi, Mar 03 2014 *) LinearRecurrence[{0,2,0,-1},{0,3,3,9},70] (* Harvey P. Dale, Jun 20 2021 *)
-
SageMath
[3*n*(3-(-1)^n)/4 for n in (0..100)] # G. C. Greubel, Jul 31 2022
Formula
a(2n) = A008585(n).
a(2n+1) = A016945(n).
G.f.: 3*x*(1+x+x^2)/((1-x)^2 * (1+x)^2).
a(n) = numerator(3n/2). - Wesley Ivan Hurt, Oct 11 2013
a(n) = 3*n / (1 + ((n+1) mod 2)). - Wesley Ivan Hurt, Feb 25 2014
From G. C. Greubel, Jul 31 2022: (Start)
a(n) = 3*n*(3 - (-1)^n)/4.
E.g.f.: (3*x/2)*( 2*cosh(x) + sinh(x) ). (End)
Extensions
Edited and extended by R. J. Mathar, Sep 26 2009
New name from Wesley Ivan Hurt, Oct 13 2013
Comments