cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A165504 Primes p with a digits sum of p^2 equal to 43.

Original entry on oeis.org

887, 1697, 1723, 1867, 1913, 2083, 2137, 2417, 2543, 2633, 2687, 2767, 2803, 2957, 3083, 3109, 3137, 3433, 3793, 3847, 3947, 4073, 4217, 4423, 4567, 4657, 4783, 4793, 4937, 5099, 5233, 5279, 5333, 5387, 5431, 5647, 5683, 5827, 6043, 6053, 6133, 6143
Offset: 1

Views

Author

Vincenzo Librandi, Sep 21 2009

Keywords

Examples

			887 is in the sequence because 887^2=786769 and 7+8+6+7+6+9=43.
1723 is in the sequence because 1723^2=2968729 and 2+9+6+8+7+2+9=43.
		

Crossrefs

Cf. primes p where the digital sum of p^2 is equal to: A226803 (7), A165492 (13), A165493 (19), A165502 (31), A165503 (37), this sequence (43).

Programs

  • Magma
    [p: p in PrimesUpTo(6150) | &+Intseq(p^2) eq 43]; // Vincenzo Librandi, Sep 12 2013
  • Mathematica
    Select[Prime[Range[300]], Total[IntegerDigits[#^2]] == 43&] (* Vincenzo Librandi, Sep 12 2013 *)

Formula

{A000040(i) : A123157(i) = 43} [R. J. Mathar, Sep 29 2009]

Extensions

More terms from R. J. Mathar, Sep 29 2009

A226803 Primes p where the digital sum of p^2 is equal to 7.

Original entry on oeis.org

5, 149, 1049
Offset: 1

Views

Author

Vincenzo Librandi, Jun 24 2013

Keywords

Comments

No more terms below 10^9. - Michel Marcus, Nov 02 2013
No more terms below 10^20. - Hiroaki Yamanouchi, Sep 23 2014

Examples

			5 is in the sequence because 5^2 = 25 and 2 + 5 = 7.
149 is in the sequence because 149^2 = 22201 and 2 + 2 + 2 + 0 + 1 = 7.
		

Crossrefs

Subsequence of A215614.

Programs

  • Magma
    [p: p in PrimesUpTo(6*10^6) | &+Intseq(p^2) eq 7];
    
  • Mathematica
    Select[Prime[Range[10000]], Total[IntegerDigits[#^2]] == 7 &]
  • PARI
    lista(nn) = {forprime(p=2, nn, if (sumdigits(p^2)==7, print1(p, ", ")););} \\ Michel Marcus, Nov 02 2013

Extensions

Keywords fini,full, since unproven, removed by Max Alekseyev, Jun 20 2025

A165503 Primes p with a digits sum of p^2 equal to 37.

Original entry on oeis.org

433, 613, 683, 773, 827, 863, 1063, 1117, 1187, 1223, 1567, 1583, 1657, 1693, 1783, 1907, 1997, 2017, 2087, 2141, 2143, 2161, 2267, 2357, 2393, 2467, 2557, 2593, 2609, 2663, 2719, 2753, 2789, 2843, 2879, 2897, 2969, 2971, 3023, 3041, 3061, 3167, 3187
Offset: 1

Views

Author

Vincenzo Librandi, Sep 21 2009

Keywords

Examples

			433 is in the sequence because 433^2=187489 and 1+8+7+4+8+9=37.
1783 is in the sequence because 1783^2=3179089 and 3+1+7+9+0+8+9=37.
		

Crossrefs

Cf. primes p where the digital sum of p^2 is equal to: A226803 (7), A165492 (13), A165493 (19), A165502 (31), this sequence (37), A165504 (43).

Programs

  • Magma
    [p: p in PrimesUpTo(6150) | &+Intseq(p^2) eq 37]; // Vincenzo Librandi, Sep 12 2013
  • Mathematica
    Select[Prime[Range[500]], Total[IntegerDigits[#^2]]== 37&] (* Vincenzo Librandi, Sep 12 2013 *)

Formula

{A000040(i) : A123157(i) = 37} [R. J. Mathar, Sep 29 2009]

Extensions

More terms from R. J. Mathar, Sep 29 2009

A226802 Primes p where the digital sum of p^2 is equal to 10.

Original entry on oeis.org

19, 71, 179, 251, 449, 20249, 24499, 100549
Offset: 1

Views

Author

Vincenzo Librandi, Jun 24 2013

Keywords

Comments

The next term is > 24154957 (if it exists). - R. J. Mathar, Jul 05 2013
No more terms below 10^12. - Hiroaki Yamanouchi, Sep 23 2014.
No additional terms < 10^15. - Chai Wah Wu, Nov 15 2015
No other terms below 10^50. The sequence is likely finite and complete. - Max Alekseyev, Jun 13 2025

Examples

			19 is in the sequence because 19^2=361 and 3+6+1=10.
71 is in the sequence because 71^2=5041 and 5+0+4+1=10.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5*10^6) | &+Intseq(p^2) eq 10];
  • Maple
    select(p -> isprime(p) and convert(convert(p^2,base,10),`+`)=10, [seq(2*k+1,k=1..100000)]); # Robert Israel, Sep 23 2014
  • Mathematica
    Select[Prime[Range[70000]], Total[IntegerDigits[#^2]]== 10&]

A229058 Primes p where the digital sum of p^2 is equal to 25.

Original entry on oeis.org

67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, 509, 599, 643, 653, 661, 743, 761, 769, 797, 1013, 1031, 1039, 1103, 1129, 1193, 1237, 1301, 1381, 1399, 1427, 1471, 1481, 1553, 1571, 1579, 1597, 1733, 1759, 1823, 1831, 1877, 2029, 2039, 2111, 2129
Offset: 1

Views

Author

Vincenzo Librandi, Sep 12 2013

Keywords

Comments

From Bruno Berselli, Sep 12 2013: (Start)
Primes q such that the digital sum of q^2 is 1 < k < 50:
k | q
---|------------
4 | 2, 11, 101;
7 | A226803;
9 | 3;
10 | A226802;
13 | A165492;
16 | A165459;
19 | A165493;
22 | 43, 97, 191, 227, 241, 317, 331, 353, ... ;
25 | this sequence;
28 | 163, 197, 233, 307, 359, 397, 431, 467, ... ;
31 | A165502;
34 | 167, 293, 383, 563, 607, 617, 733, 787, ... ;
37 | A165504;
40 | 313, 947, 983, 1303, 1483, 1609, 1663, ... ;
43 | A165504;
46 | 883, 937, 1367, 1637, 2213, 2447, 2683, ... ;
49 | 1667, 2383, 2437, 2617, 2963, 4219, 4457, ... . (End)

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2600) | &+Intseq(p^2) eq 25];
  • Mathematica
    Select[Prime[Range[400]], Total[IntegerDigits[#^2]] == 25 &]

A234429 Numbers which are the digital sum of the square of some prime.

Original entry on oeis.org

4, 7, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 1

Views

Author

Keywords

Comments

A123157 sorted and duplicates removed.

Crossrefs

Programs

  • PARI
    terms(nn) = {v = []; forprime (p = 1, nn, v = concat(v, sumdigits(p^2));); vecsort(v,,8);} \\ Michel Marcus, Jan 08 2014

Formula

From Robert G. Wilson v, Sep 28 2014: (Start)
Except for 3, all primes are congruent to +-1 (mod 3). Therefore, (3n +- 1)^2 = 9n^2 +- 6n + 1 which is congruent to 1 (mod 3).
4: 2, 11, 101, ... (A062397);
7: 5, 149, 1049, ... (A226803);
9: only 3;
10: 19, 71, 179, 251, 449, 20249, 24499, 100549, ... (A226802);
13: 7, 29, 47, 61, 79, 151, 349, 389, 461, 601, 1051, 1249, 1429, ... (A165492);
16: 13, 23, 31, 41, 59, 103, 131, 139, 211, 229, 239, 347, 401, ... (A165459);
19: 17, 37, 53, 73, 89, 107, 109, 127, 181, 199, 269, 271, 379, ... (A165493);
22: 43, 97, 191, 227, 241, 317, 331, 353, 421, 439, 479, 569, 619, 641, ...;
25: 67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, ... (A229058);
28: 163, 197, 233, 307, 359, 397, 431, 467, 487, 523, 541, 577, 593, 631, ...;
31: 83, 137, 173, 223, 263, 277, 281, 367, 443, 457, 547, 587, ... (A165502);
34: 167, 293, 383, 563, 607, 617, 733, 787, 823, 859, 877, 941, 967, 977, ...;
37: 433, 613, 683, 773, 827, 863, 1063, 1117, 1187, 1223, 1567, ... (A165503);
40: 313, 947, 983, 1303, 1483, 1609, 1663, 1933, 1973, 1987, 2063, 2113, ...;
43: 887, 1697, 1723, 1867, 1913, 2083, 2137, 2417, 2543, 2633, ... (A165504);
46: 883, 937, 1367, 1637, 2213, 2447, 2683, 2791, 2917, 3313, 3583, 3833, ...;
49: 1667, 2383, 2437, 2617, 2963, 4219, 4457, 5087, 5281, 6113, 6163, ...;
... Also see A229058. (End)
Conjectures from Chai Wah Wu, Apr 16 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 5.
G.f.: x*(2*x^4 - x^3 - x^2 - x + 4)/(x - 1)^2. (End)

Extensions

a(36) from Michel Marcus, Jan 08 2014
a(37)-a(54) from Robert G. Wilson v, Sep 28 2014
More terms from Giovanni Resta, Aug 15 2019
Showing 1-6 of 6 results.