cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165517 Indices of the least triangular numbers (A000217) for which three consecutive triangular numbers sum to a perfect square (A000290).

Original entry on oeis.org

0, 5, 14, 63, 152, 637, 1518, 6319, 15040, 62565, 148894, 619343, 1473912, 6130877, 14590238, 60689439, 144428480, 600763525, 1429694574, 5946945823, 14152517272, 58868694717, 140095478158, 582740001359, 1386802264320
Offset: 1

Views

Author

Ant King, Sep 25 2009, Oct 01 2009

Keywords

Comments

Those perfect squares that can be expressed as the sum of three consecutive triangular numbers correspond to integer solutions of the equation T(k)+T(k+1)+T(k+2)=s^2, or equivalently to 3k^2 + 9k + 8 = 2s^2. Hence solutions occur whenever (3k^2 + 9k + 8)/2 is a perfect square, or equivalently when s>=2 and sqrt(24s^2 - 15) is congruent to 3 mod 6. This sequence returns the index of the smallest of the 3 triangular numbers, the values of s^2 are given in A165516 and, with the exception of the first term, the values of s are in A129445.

Examples

			The fourth perfect square that can be expressed as the sum of three consecutive triangular numbers is 6241 = T(63) + T(64) + T(65). Hence a(4)=63.
		

Crossrefs

Programs

  • Magma
    I:=[0, 5, 14, 63, 152]; [n le 5 select I[n] else Self(n-1) + 10*Self(n-2) - 10*Self(n-3) - Self(n-4) + Self(n-5): n in [1..50]]; // G. C. Greubel, Oct 21 2018
  • Mathematica
    TriangularNumber[ n_ ]:=1/2 n (n+1);Select[ Range[ 0,10^7 ], IntegerQ[ Sqrt[ TriangularNumber[ # ]+TriangularNumber[ #+1 ]+TriangularNumber[ #+2 ] ] ] & ]
    CoefficientList[Series[x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)), {x,0,50}], x] (* or *) LinearRecurrence[{1,10,-10,-1,1}, {0, 5, 14, 63, 152}, 50] (* G. C. Greubel, Feb 17 2017 *)
  • PARI
    x='x+O('x^50); concat([0], Vec(x*(x^3 + x^2 - 9*x - 5)/((x - 1)*(x^4 - 10*x^2 + 1)))) \\ G. C. Greubel, Feb 17 2017
    

Formula

a(n) = a(n-1) + 10*a(n-2) - 10*a(n-3) - a(n-4) + a(n-5).
G.f.: x(x^3 + x^2 - 9x - 5)/((x-1)(x^4 - 10x^2 + 1)).
a(n) = 10*a(n-2) - a(n-4) + 12. - Zak Seidov, Sep 25 2009

Extensions

a(1) = 0 added by N. J. A. Sloane, Sep 28 2009, at the suggestion of Alexander R. Povolotsky
More terms from Zak Seidov, Sep 25 2009