cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A165576 Partial sums of A165574.

Original entry on oeis.org

0, 1, 2, 3, 4, 3, 4, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 15, 14, 13, 12, 13, 14, 13, 14, 13, 14, 15, 16, 17, 18, 17, 18, 17, 16, 15, 14, 13, 12, 13, 14, 13, 14, 13, 14, 13, 14, 15, 16, 15, 16, 15, 16, 17, 16, 15
Offset: 0

Views

Author

Antti Karttunen, Sep 22 2009

Keywords

Comments

Period 263. There are no negative values as 263 is one of the primes in A095102.

Crossrefs

Programs

  • Mathematica
    Accumulate[JacobiSymbol[Range[0,90],263]] (* Harvey P. Dale, Sep 01 2021 *)

A175629 Legendre symbol (n,7).

Original entry on oeis.org

0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, 1, -1, -1, 0, 1, 1
Offset: 0

Views

Author

R. J. Mathar, Jul 29 2010

Keywords

Comments

This represents a non-principal Dirichlet character modulo 7.

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1986, page 139, k=7, Chi_2(n).

Crossrefs

The Legendre symbols (n,p): A091337 (p = 2, Kronecker symbol), A102283 (p = 3), A080891 (p = 5), this sequence (p = 7), A011582 (p = 11), A011583 (p = 13), ..., A011631 (p = 251), A165573 (p = 257), A165574 (p = 263). Also, many other sequences for p > 263 are in the OEIS.
Moebius transform of A035182.

Programs

  • Magma
    &cat [[0, 1, 1, -1, 1, -1, -1]^^20]; // Vincenzo Librandi, Jun 30 2018
    
  • Maple
    A := proc(n) numtheory[jacobi](n,7) ; end proc: seq(A(n),n=0..120) ;
  • Mathematica
    LinearRecurrence[{-1,-1,-1,-1,-1,-1},{0,1,1,-1,1,-1},100] (* or *) PadRight[ {},100,{0,1,1,-1,1,-1,-1}] (* Harvey P. Dale, Aug 02 2013 *)
    Table[JacobiSymbol[n, 7], {n, 0, 100}] (* Vincenzo Librandi, Jun 30 2018 *)
  • PARI
    a(n) = kronecker(n, 7); \\ Michel Marcus, Jan 28 2019

Formula

a(n) = a(n+7).
|a(n)| = A109720(n).
a(n) = -a(n-1) - a(n-2) - a(n-3) - a(n-4) - a(n-5) - a(n-6).
G.f.: x*(1 + 2*x + x^2 + 2*x^3 + x^4)/(1 + x + x^2 + x^3 + x^4 + x^5 + x^6).
a(n) == n^3 (mod 7). - Jianing Song, Jun 29 2018

A165591 Jacobi symbol (n,59701).

Original entry on oeis.org

0, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1
Offset: 0

Views

Author

Antti Karttunen, Sep 22 2009

Keywords

Comments

Semiprime 59701 = 227*263 = A005385(11)*A005385(12).

Crossrefs

a(n) = A011626(n)*A165574(n). Partial sums: A165592. Cf. A165471.
Showing 1-3 of 3 results.