A165652 Number of disconnected 2-regular graphs on n vertices.
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 8, 9, 12, 16, 20, 24, 32, 38, 48, 59, 72, 87, 109, 129, 157, 190, 229, 272, 330, 390, 467, 555, 659, 778, 926, 1086, 1283, 1509, 1774, 2074, 2437, 2841, 3322, 3871, 4509, 5236, 6094, 7055, 8181, 9464, 10944, 12624, 14577, 16778, 19322, 22209
Offset: 0
A006822 Number of connected regular graphs of degree 6 (or sextic graphs) with n nodes.
1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7849, 367860, 21609300, 1470293675, 113314233808, 9799685588936, 945095823831036, 101114579937187980, 11945375659139626688, 1551593789610509806552, 220716215902792573134799, 34259321384370620122314325, 5782740798229825207562109439
Offset: 0
References
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Regular Graph
- Eric Weisstein's World of Mathematics, Sextic Graph
Crossrefs
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
6-regular simple graphs: this sequence (connected), A165656 (disconnected), A165627 (not necessarily connected).
Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), this sequence (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 6-regular simple graphs with girth at least g: this sequence (g=3), A058276 (g=4).
Formula
Extensions
a(16) and a(17) appended, from running M. Meringer's GENREG at U. Newcastle for 41 processor days and 3.5 processor years, by Jason Kimberley, Sep 04 2009 and Nov 13 2009.
Terms a(18)-a(24), due to the extension of A165627 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020
A033483 Number of disconnected 4-valent (or quartic) graphs with n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 378, 2026, 13351, 104595, 930586, 9124662, 96699987, 1095469608, 13175272208, 167460699184, 2241578965849, 31510542635443, 464047929509794, 7143991172244290, 114749135506381940, 1919658575933845129, 33393712487076999918, 603152722419661386031
Offset: 0
References
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
Links
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Disconnected Graph
- Eric Weisstein's World of Mathematics, Quartic Graph
Crossrefs
4-regular simple graphs: A006820 (connected), this sequence (disconnected), A033301 (not necessarily connected). - Jason Kimberley, Jan 08 2011
Programs
Formula
Extensions
Terms a(16)-a(18) from Martin Fuller, Dec 04 2006
Terms a(19)-a(26) from Jason Kimberley, Sep 27 2009 and Dec 30 2010
Terms a(27)-a(33), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020
A165627 Number of 6-regular graphs (sextic graphs) on n vertices.
1, 0, 0, 0, 0, 0, 0, 1, 1, 4, 21, 266, 7849, 367860, 21609301, 1470293676, 113314233813, 9799685588961, 945095823831333, 101114579937196179, 11945375659140003692, 1551593789610531820695, 220716215902794066709555, 34259321384370735003091907, 5782740798229835127025560294
Offset: 0
Comments
Because the triangle A051031 is symmetric, a(n) is also the number of (n-7)-regular graphs on n vertices.
Links
- Georg Grasegger, Hakan Guler, Bill Jackson, Anthony Nixon, Flexible circuits in the d-dimensional rigidity matroid, arXiv:2003.06648 [math.CO], 2020.
- Jason Kimberley, Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
- M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146.
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Regular Graph
- Eric Weisstein's World of Mathematics, Sextic Graph
Crossrefs
Programs
Formula
Euler transformation of A006822.
Extensions
Cross-references edited by Jason Kimberley, Nov 07 2009 and Oct 17 2011
a(17) from Jason Kimberley, Dec 30 2010
a(18)-a(24) from Andrew Howroyd, Mar 07 2020
A165653 Number of disconnected 3-regular (cubic) graphs on 2n vertices.
0, 0, 0, 0, 1, 2, 9, 31, 147, 809, 5855, 54477, 633057, 8724874, 137047391, 2391169355, 45626910415, 942659626031, 20937539944549, 497209670658529, 12566853576025106, 336749273734805530, 9534909974420181226
Offset: 0
Links
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Cubic Graph
- Eric Weisstein's World of Mathematics, Disconnected Graph
Crossrefs
Programs
-
Mathematica
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]]; A005638 = A@005638; A002851 = A@002851; a[n_] := A005638[[n + 1]] - A002851[[n + 1]]; a /@ Range[0, 20] (* Jean-François Alcover, Jan 21 2020 *)
A165655 Number of disconnected 5-regular (quintic) graphs on 2n vertices.
0, 0, 0, 0, 0, 0, 1, 3, 66, 8029, 3484760, 2595985770, 2815099031417, 4230059694039460, 8529853839173455678, 22496718465713456081402, 75951258300080722467845995, 322269241532759484921710401976
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Disconnected Graph
- Eric Weisstein's World of Mathematics, Quintic Graph
Crossrefs
Extensions
Terms a(13)-a(17), due to the extension of A006821 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020
A165877 Number of disconnected 7-regular (septic) graphs on 2n vertices.
0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 1562, 21617036, 733460349818, 42703733735064572, 4073409466378991404239, 613990076321940092226829047, 141518698937232822678583027258225
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Septic Graph
Crossrefs
Formula
Extensions
a(13)-a(16) from Andrew Howroyd, May 20 2020
A165878 Number of disconnected 8-regular simple graphs on n vertices.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 100, 10901, 3470736, 1473822243, 734843169811, 423929978716908, 281768931380519766, 215039290728074333738, 187766225244288486398132, 186874272297562916477691894, 211165081721567703008217979077
Offset: 0
Examples
The a(18)=1 graph is K_9+K_9.
Links
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Disconnected Graph
- Eric Weisstein's World of Mathematics, Octic Graph
Crossrefs
Formula
Extensions
Terms a(26) and beyond from Andrew Howroyd, May 20 2020
A185203 Number of disconnected 10-regular graphs with n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 11, 550, 806174, 2585947720, 9802278927562, 42709859521915286, 214798119408798346811, 1251607430636395979871600, 8463468717232507491862780325, 66406919318277846825588474735084
Offset: 0
Links
Crossrefs
10-regular simple graphs: A014382 (connected), this sequence (disconnected).
Extensions
Terms a(29) and beyond from Andrew Howroyd, May 20 2020
A185213 Number of disconnected 11-regular graphs with 2n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 8037887, 945095928322681, 187549741420313256356540, 66398446859255608487987488813721, 43100445877221052008718432480116589483823
Offset: 0
Links
Crossrefs
11-regular simple graphs: A014384 (connected), this sequence (disconnected).
Extensions
a(15)-a(18) from Andrew Howroyd, May 20 2020
Comments
Examples
Links
Crossrefs
Programs
Magma
Formula