A165652 Number of disconnected 2-regular graphs on n vertices.
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 8, 9, 12, 16, 20, 24, 32, 38, 48, 59, 72, 87, 109, 129, 157, 190, 229, 272, 330, 390, 467, 555, 659, 778, 926, 1086, 1283, 1509, 1774, 2074, 2437, 2841, 3322, 3871, 4509, 5236, 6094, 7055, 8181, 9464, 10944, 12624, 14577, 16778, 19322, 22209
Offset: 0
A014378 Number of connected regular graphs of degree 8 with n nodes.
1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 94, 10786, 3459386, 1470293676, 733351105935, 423187422492342, 281341168330848873, 214755319657939505395, 187549729101764460261498, 186685399408147545744203815, 210977245260028917322933154987
Offset: 0
Comments
Since the nontrivial 8-regular graph with the least number of vertices is K_9, there are no disconnected 8-regular graphs with less than 18 vertices. Thus for n<18 this sequence is identical to A180260. - Jason Kimberley, Sep 25 2009 and Feb 10 2011
Examples
a(0)=1 because the null graph (with no vertices) is vacuously 8-regular and connected.
References
- CRC Handbook of Combinatorial Designs, 1996, p. 648.
- I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
Links
- Jason Kimberley, Index of sequences counting connected k-regular simple graphs with girth at least g
- M. Meringer, Tables of Regular Graphs
- Eric Weisstein's World of Mathematics, Connected Graph
- Eric Weisstein's World of Mathematics, Octic Graph
- Eric Weisstein's World of Mathematics, Regular Graph
Crossrefs
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
8-regular simple graphs: this sequence (connected), A165878 (disconnected), A180260 (not necessarily connected).
Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), this sequence (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Formula
Extensions
Using the symmetry of A051031, a(15) and a(16) were appended by Jason Kimberley, Sep 25 2009
a(17)-a(22) from Andrew Howroyd, Mar 13 2020
A033483 Number of disconnected 4-valent (or quartic) graphs with n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 378, 2026, 13351, 104595, 930586, 9124662, 96699987, 1095469608, 13175272208, 167460699184, 2241578965849, 31510542635443, 464047929509794, 7143991172244290, 114749135506381940, 1919658575933845129, 33393712487076999918, 603152722419661386031
Offset: 0
References
- R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
Links
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- N. J. A. Sloane, Transforms
- Eric Weisstein's World of Mathematics, Disconnected Graph
- Eric Weisstein's World of Mathematics, Quartic Graph
Crossrefs
4-regular simple graphs: A006820 (connected), this sequence (disconnected), A033301 (not necessarily connected). - Jason Kimberley, Jan 08 2011
Programs
Formula
Extensions
Terms a(16)-a(18) from Martin Fuller, Dec 04 2006
Terms a(19)-a(26) from Jason Kimberley, Sep 27 2009 and Dec 30 2010
Terms a(27)-a(33), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020
A165653 Number of disconnected 3-regular (cubic) graphs on 2n vertices.
0, 0, 0, 0, 1, 2, 9, 31, 147, 809, 5855, 54477, 633057, 8724874, 137047391, 2391169355, 45626910415, 942659626031, 20937539944549, 497209670658529, 12566853576025106, 336749273734805530, 9534909974420181226
Offset: 0
Links
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Cubic Graph
- Eric Weisstein's World of Mathematics, Disconnected Graph
Crossrefs
Programs
-
Mathematica
A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]]; A005638 = A@005638; A002851 = A@002851; a[n_] := A005638[[n + 1]] - A002851[[n + 1]]; a /@ Range[0, 20] (* Jean-François Alcover, Jan 21 2020 *)
A165655 Number of disconnected 5-regular (quintic) graphs on 2n vertices.
0, 0, 0, 0, 0, 0, 1, 3, 66, 8029, 3484760, 2595985770, 2815099031417, 4230059694039460, 8529853839173455678, 22496718465713456081402, 75951258300080722467845995, 322269241532759484921710401976
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Disconnected Graph
- Eric Weisstein's World of Mathematics, Quintic Graph
Crossrefs
Extensions
Terms a(13)-a(17), due to the extension of A006821 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020
A165656 Number of disconnected 6-regular (sextic) graphs on n vertices.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 25, 297, 8199, 377004, 22014143, 1493574756, 114880777582, 9919463450855, 955388277929620, 102101882472479938, 12050526046888229845, 1563967741064673811531, 222318116370232302781485, 34486536277291555593662301, 5817920265098158804699762770
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Disconnected Graph
- Eric Weisstein's World of Mathematics, Regular Graph
- Eric Weisstein's World of Mathematics, Sextic Graph
Crossrefs
Formula
Extensions
Terms a(25) and beyond from Andrew Howroyd, May 20 2020
A165877 Number of disconnected 7-regular (septic) graphs on 2n vertices.
0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 1562, 21617036, 733460349818, 42703733735064572, 4073409466378991404239, 613990076321940092226829047, 141518698937232822678583027258225
Offset: 0
Links
- N. J. A. Sloane, Transforms
- Jason Kimberley, Disconnected regular graphs (with girth at least 3)
- Jason Kimberley, Index of sequences counting disconnected k-regular simple graphs with girth at least g
- Eric Weisstein's World of Mathematics, Septic Graph
Crossrefs
Formula
Extensions
a(13)-a(16) from Andrew Howroyd, May 20 2020
A185203 Number of disconnected 10-regular graphs with n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 11, 550, 806174, 2585947720, 9802278927562, 42709859521915286, 214798119408798346811, 1251607430636395979871600, 8463468717232507491862780325, 66406919318277846825588474735084
Offset: 0
Links
Crossrefs
10-regular simple graphs: A014382 (connected), this sequence (disconnected).
Extensions
Terms a(29) and beyond from Andrew Howroyd, May 20 2020
A185213 Number of disconnected 11-regular graphs with 2n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 8037887, 945095928322681, 187549741420313256356540, 66398446859255608487987488813721, 43100445877221052008718432480116589483823
Offset: 0
Links
Crossrefs
11-regular simple graphs: A014384 (connected), this sequence (disconnected).
Extensions
a(15)-a(18) from Andrew Howroyd, May 20 2020
A185293 Number of disconnected 9-regular graphs with 2n nodes.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 88238, 113315027550, 281342192047999912, 1251394783006077652496450, 9854615127100313024544239975139, 134283364935428822131144679491097123786
Offset: 0
Links
Crossrefs
9-regular simple graphs: A014381 (connected), this sequence (disconnected).
Extensions
a(14)-a(17) from Andrew Howroyd, May 20 2020
Comments
Examples
Links
Crossrefs
Programs
Magma
Formula