cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A033483 Number of disconnected 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 378, 2026, 13351, 104595, 930586, 9124662, 96699987, 1095469608, 13175272208, 167460699184, 2241578965849, 31510542635443, 464047929509794, 7143991172244290, 114749135506381940, 1919658575933845129, 33393712487076999918, 603152722419661386031
Offset: 0

Views

Author

Ronald C. Read

Keywords

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), this sequence (disconnected), A033301 (not necessarily connected). - Jason Kimberley, Jan 08 2011
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), this sequence (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).
Disconnected 4-regular simple graphs with girth at least g: this sequence (g=3), A185244 (g=4), A185245 (g=5), A185246 (g=6).

Programs

Formula

a(n) = A033301(n) - A006820(n) = Euler_transformation(A006820) - A006820.
a(n) = A068933(n, 4). - Jason Kimberley, Sep 27 2009 and Jan 08 2011

Extensions

Terms a(16)-a(18) from Martin Fuller, Dec 04 2006
Terms a(19)-a(26) from Jason Kimberley, Sep 27 2009 and Dec 30 2010
Terms a(27)-a(33), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A014381 Number of connected regular graphs of degree 9 with 2n nodes.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 9, 88193, 113314233813, 281341168330848874, 1251392240942040452186674, 9854603833337765095207342173991, 134283276101750327256393048776114352985
Offset: 0

Views

Author

Keywords

Comments

Since the nontrivial 9-regular graph with the least number of vertices is K_10, there are no disconnected 9-regular graphs with less than 20 vertices. Thus for n<20 this sequence also gives the number of all 9-regular graphs on 2n vertices. - Jason Kimberley, Sep 25 2009

Examples

			The null graph on 0 vertices is vacuously connected and 9-regular; since it is acyclic, it has infinite girth. - _Jason Kimberley_, Feb 10 2011
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 648.
  • I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.

Crossrefs

Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), this sequence (k=9), A014382 (k=10), A014384 (k=11).
9-regular simple graphs: this sequence (connected), A185293 (disconnected).
Connected 9-regular simple graphs with girth at least g: this sequence (g=3), A181170 (g=4).
Connected 9-regular simple graphs with girth exactly g: A184993 (g=3).

Formula

a(n) = A184993(n) + A181170(n).

Extensions

a(8) appended using the symmetry of A051031 by Jason Kimberley, Sep 25 2009
a(9)-a(10) from Andrew Howroyd, Mar 13 2020
a(10) corrected and a(11)-a(12) from Andrew Howroyd, May 19 2020

A165653 Number of disconnected 3-regular (cubic) graphs on 2n vertices.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 9, 31, 147, 809, 5855, 54477, 633057, 8724874, 137047391, 2391169355, 45626910415, 942659626031, 20937539944549, 497209670658529, 12566853576025106, 336749273734805530, 9534909974420181226
Offset: 0

Views

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

3-regular simple graphs: A002851 (connected), this sequence (disconnected), A005638 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), this sequence (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A005638 = A@005638;
    A002851 = A@002851;
    a[n_] := A005638[[n + 1]] - A002851[[n + 1]];
    a /@ Range[0, 20] (* Jean-François Alcover, Jan 21 2020 *)

Formula

a(n) = A005638(n) - A002851(n).
a(n) = A068933(2n, 3).

A165655 Number of disconnected 5-regular (quintic) graphs on 2n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 66, 8029, 3484760, 2595985770, 2815099031417, 4230059694039460, 8529853839173455678, 22496718465713456081402, 75951258300080722467845995, 322269241532759484921710401976
Offset: 0

Views

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

5-regular simple graphs: A006821 (connected), this sequence (disconnected), A165626 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), this sequence (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A165626 - A006821 = Euler_transformation(A006821) - A006821.
a(n)=A068933(2n,5).

Extensions

Terms a(13)-a(17), due to the extension of A006821 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A165656 Number of disconnected 6-regular (sextic) graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 25, 297, 8199, 377004, 22014143, 1493574756, 114880777582, 9919463450855, 955388277929620, 102101882472479938, 12050526046888229845, 1563967741064673811531, 222318116370232302781485, 34486536277291555593662301, 5817920265098158804699762770
Offset: 0

Views

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

6-regular simple graphs: A006822 (connected), this sequence (disconnected), A165627 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), this sequence (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A165627 - A006822 = Euler_transformation(A006822) - A006822.
a(n) = D(n, 6) in the triangle A068933.

Extensions

Terms a(25) and beyond from Andrew Howroyd, May 20 2020

A165877 Number of disconnected 7-regular (septic) graphs on 2n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 1562, 21617036, 733460349818, 42703733735064572, 4073409466378991404239, 613990076321940092226829047, 141518698937232822678583027258225
Offset: 0

Views

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

7-regular simple graphs: A014377 (connected), this sequence(disconnected), A165628 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), this sequence (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A165628 - A014377 = Euler_transformation(A014377) - A014377.
a(n)=D(2n, 7) in the triangle A068933.

Extensions

a(13)-a(16) from Andrew Howroyd, May 20 2020

A165878 Number of disconnected 8-regular simple graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 100, 10901, 3470736, 1473822243, 734843169811, 423929978716908, 281768931380519766, 215039290728074333738, 187766225244288486398132, 186874272297562916477691894, 211165081721567703008217979077
Offset: 0

Views

Author

Jason Kimberley, Sep 29 2009

Keywords

Examples

			The a(18)=1 graph is K_9+K_9.
		

Crossrefs

8-regular simple graphs: A014378 (connected), this sequence (disconnected), A180260 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), this sequence (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A180260 - A014378 = Euler_transformation(A014378) - A014378.
a(n) = D(n, 8) in the triangle A068933.

Extensions

Terms a(26) and beyond from Andrew Howroyd, May 20 2020

A185203 Number of disconnected 10-regular graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 11, 550, 806174, 2585947720, 9802278927562, 42709859521915286, 214798119408798346811, 1251607430636395979871600, 8463468717232507491862780325, 66406919318277846825588474735084
Offset: 0

Views

Author

Jason Kimberley, Jan 26 2012

Keywords

Crossrefs

10-regular simple graphs: A014382 (connected), this sequence (disconnected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), this sequence (k=10), A185213 (k=11).

Extensions

Terms a(29) and beyond from Andrew Howroyd, May 20 2020

A185213 Number of disconnected 11-regular graphs with 2n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 13, 8037887, 945095928322681, 187549741420313256356540, 66398446859255608487987488813721, 43100445877221052008718432480116589483823
Offset: 0

Views

Author

Jason Kimberley, Jan 26 2012

Keywords

Crossrefs

11-regular simple graphs: A014384 (connected), this sequence (disconnected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), this sequence (k=11).

Extensions

a(15)-a(18) from Andrew Howroyd, May 20 2020
Showing 1-9 of 9 results.