cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002851 Number of unlabeled trivalent (or cubic) connected simple graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 5, 19, 85, 509, 4060, 41301, 510489, 7319447, 117940535, 2094480864, 40497138011, 845480228069, 18941522184590, 453090162062723, 11523392072541432, 310467244165539782, 8832736318937756165
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x^2 + 2*x^3 + 5*x^4 + 19*x^5 + 85*x^6 + 509*x^7 + 4060*x^8 + 41302*x^9 + 510489*x^10 + 7319447*x^11 + ...
a(0) = 1 because the null graph (with no vertices) is vacuously 3-regular.
a(1) = 0 because there are no simple connected cubic graphs with 2 nodes.
a(2) = 1 because the tetrahedron is the only cubic graph with 4 nodes.
a(3) = 2 because there are two simple cubic graphs with 6 nodes: the bipartite graph K_{3,3} and the triangular prism graph.
		

References

  • CRC Handbook of Combinatorial Designs, 1996, p. 647.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 195.
  • R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
  • R. C. Read and G. F. Royle, Chromatic roots of families of graphs, pp. 1009-1029 of Y. Alavi et al., eds., Graph Theory, Combinatorics and Applications. Wiley, NY, 2 vols., 1991.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence)

Crossrefs

Cf. A004109 (labeled connected cubic), A361407 (rooted connected cubic), A321305 (signed connected cubic), A000421 (connected cubic loopless multigraphs), A005967 (connected cubic multigraphs), A275744 (multisets).
Contribution (almost all) from Jason Kimberley, Feb 10 2011: (Start)
3-regular simple graphs: this sequence (connected), A165653 (disconnected), A005638 (not necessarily connected), A005964 (planar).
Connected regular graphs A005177 (any degree), A068934 (triangular array), specified degree k: this sequence (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11).
Connected 3-regular simple graphs with girth at least g: A185131 (triangle); chosen g: this sequence (g=3), A014371 (g=4), A014372 (g=5), A014374 (g=6), A014375 (g=7), A014376 (g=8).
Connected 3-regular simple graphs with girth exactly g: A198303 (triangle); chosen g: A006923 (g=3), A006924 (g=4), A006925 (g=5), A006926 (g=6), A006927 (g=7). (End)

Extensions

More terms from Ronald C. Read

A005638 Number of unlabeled trivalent (or cubic) graphs with 2n nodes.

Original entry on oeis.org

1, 0, 1, 2, 6, 21, 94, 540, 4207, 42110, 516344, 7373924, 118573592, 2103205738, 40634185402, 847871397424, 18987149095005, 454032821688754, 11544329612485981, 310964453836198311, 8845303172513781271
Offset: 0

Views

Author

Keywords

Comments

Because the triangle A051031 is symmetric, a(n) is also the number of (2n-4)-regular graphs on 2n vertices.

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000421.
Row sums of A275744.
3-regular simple graphs: A002851 (connected), A165653 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), this sequence (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7), A180260 (k=8).
Not necessarily connected 3-regular simple graphs with girth *at least* g: this sequence (g=3), A185334 (g=4), A185335 (g=5), A185336 (g=6).
Not necessarily connected 3-regular simple graphs with girth *exactly* g: A185133 (g=3), A185134 (g=4), A185135 (g=5), A185136 (g=6).

Formula

a(n) = A002851(n) + A165653(n).
This sequence is the Euler transformation of A002851.

Extensions

More terms from Ronald C. Read.
Comment, formulas, and (most) crossrefs by Jason Kimberley, 2009 and 2012

A165652 Number of disconnected 2-regular graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 8, 9, 12, 16, 20, 24, 32, 38, 48, 59, 72, 87, 109, 129, 157, 190, 229, 272, 330, 390, 467, 555, 659, 778, 926, 1086, 1283, 1509, 1774, 2074, 2437, 2841, 3322, 3871, 4509, 5236, 6094, 7055, 8181, 9464, 10944, 12624, 14577, 16778, 19322, 22209
Offset: 0

Views

Author

Jason Kimberley, Sep 28 2009

Keywords

Comments

a(n) is also the number of partitions of n such that each part i satisfies 2
For n>=2, it appears that a(n+1) is the number of (1,0)-separable partitions of n, as defined at A239482. For example, the four (1,0)-separable partitions of 9 are 621, 531, 441, 31212, corresponding to a(10) = 4. - Clark Kimberling, Mar 21 2014.

Examples

			The a(6)=1 graph is C_3+C_3. The a(7)=1 graph is C_3+C_4. The a(8)=2 graphs are C_3+C_5, C_4+C_4. The a(9)=3 graphs are 3C_3, C_3+C_6, C_4+C_5.
		

Crossrefs

2-regular simple graphs: A179184 (connected), this sequence (disconnected), A008483 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A157928 (k=0), A157928 (k=1), this sequence (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8).
Disconnected 2-regular simple graphs with girth at least g: this sequence (g=3), A185224 (g=4), A185225 (g=5), A185226 (g=6), A185227 (g=7), A185228 (g=8), A185229 (g=9).
Cf. A239482.

Programs

  • Magma
    p := NumberOfPartitions; a := func< n | n lt 3 select 0 else p(n) - p(n-1) - p(n-2) + p(n-3) - 1 >;

Formula

a = A008483 - A179184 = Euler_tranformation(A179184) - A179184.
For n > 2, since there is exactly one connected 2-regular graph on n vertices (the n cycle C_n) then a(n) = A008483(n) - 1.
(A008483(n) is also the number of not necessarily connected 2-regular graphs on n vertices.)
Column D(n, 2) in the triangle A068933.

A033483 Number of disconnected 4-valent (or quartic) graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 8, 25, 88, 378, 2026, 13351, 104595, 930586, 9124662, 96699987, 1095469608, 13175272208, 167460699184, 2241578965849, 31510542635443, 464047929509794, 7143991172244290, 114749135506381940, 1919658575933845129, 33393712487076999918, 603152722419661386031
Offset: 0

Author

Ronald C. Read

Keywords

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.

Crossrefs

4-regular simple graphs: A006820 (connected), this sequence (disconnected), A033301 (not necessarily connected). - Jason Kimberley, Jan 08 2011
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), this sequence (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).
Disconnected 4-regular simple graphs with girth at least g: this sequence (g=3), A185244 (g=4), A185245 (g=5), A185246 (g=6).

Programs

Formula

a(n) = A033301(n) - A006820(n) = Euler_transformation(A006820) - A006820.
a(n) = A068933(n, 4). - Jason Kimberley, Sep 27 2009 and Jan 08 2011

Extensions

Terms a(16)-a(18) from Martin Fuller, Dec 04 2006
Terms a(19)-a(26) from Jason Kimberley, Sep 27 2009 and Dec 30 2010
Terms a(27)-a(33), due to the extension of A006820 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A165655 Number of disconnected 5-regular (quintic) graphs on 2n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 66, 8029, 3484760, 2595985770, 2815099031417, 4230059694039460, 8529853839173455678, 22496718465713456081402, 75951258300080722467845995, 322269241532759484921710401976
Offset: 0

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

5-regular simple graphs: A006821 (connected), this sequence (disconnected), A165626 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), this sequence (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A165626 - A006821 = Euler_transformation(A006821) - A006821.
a(n)=A068933(2n,5).

Extensions

Terms a(13)-a(17), due to the extension of A006821 by Andrew Howroyd, from Jason Kimberley, Mar 12 2020

A165656 Number of disconnected 6-regular (sextic) graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 5, 25, 297, 8199, 377004, 22014143, 1493574756, 114880777582, 9919463450855, 955388277929620, 102101882472479938, 12050526046888229845, 1563967741064673811531, 222318116370232302781485, 34486536277291555593662301, 5817920265098158804699762770
Offset: 0

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

6-regular simple graphs: A006822 (connected), this sequence (disconnected), A165627 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), this sequence (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A165627 - A006822 = Euler_transformation(A006822) - A006822.
a(n) = D(n, 6) in the triangle A068933.

Extensions

Terms a(25) and beyond from Andrew Howroyd, May 20 2020

A165877 Number of disconnected 7-regular (septic) graphs on 2n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 1562, 21617036, 733460349818, 42703733735064572, 4073409466378991404239, 613990076321940092226829047, 141518698937232822678583027258225
Offset: 0

Author

Jason Kimberley, Sep 28 2009

Keywords

Crossrefs

7-regular simple graphs: A014377 (connected), this sequence(disconnected), A165628 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), this sequence (k=7), A165878 (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A165628 - A014377 = Euler_transformation(A014377) - A014377.
a(n)=D(2n, 7) in the triangle A068933.

Extensions

a(13)-a(16) from Andrew Howroyd, May 20 2020

A165878 Number of disconnected 8-regular simple graphs on n vertices.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 100, 10901, 3470736, 1473822243, 734843169811, 423929978716908, 281768931380519766, 215039290728074333738, 187766225244288486398132, 186874272297562916477691894, 211165081721567703008217979077
Offset: 0

Author

Jason Kimberley, Sep 29 2009

Keywords

Examples

			The a(18)=1 graph is K_9+K_9.
		

Crossrefs

8-regular simple graphs: A014378 (connected), this sequence (disconnected), A180260 (not necessarily connected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), this sequence (k=8), A185293 (k=9), A185203 (k=10), A185213 (k=11).

Formula

a = A180260 - A014378 = Euler_transformation(A014378) - A014378.
a(n) = D(n, 8) in the triangle A068933.

Extensions

Terms a(26) and beyond from Andrew Howroyd, May 20 2020

A185033 Number of disconnected 3-regular simple graphs on 2n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 8, 29, 138, 774, 5678, 53324, 622716, 8604351, 135344959, 2363662004, 45134533117, 933058713014, 20735549517852, 492653820710746
Offset: 0

Author

Jason Kimberley, Feb 29 2012

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth exactly 3: A210713 (any k), A210703 (triangle); for fixed k: this sequence (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).
Disconnected 3-regular simple graphs with girth exactly g: this sequence (g=3), A185034 (g=4), A185035 (g=5), A185036 (g=6), A185037 (g=7).

Formula

a(n) = A165653(n) - A185234(n).

A185203 Number of disconnected 10-regular graphs with n nodes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 11, 550, 806174, 2585947720, 9802278927562, 42709859521915286, 214798119408798346811, 1251607430636395979871600, 8463468717232507491862780325, 66406919318277846825588474735084
Offset: 0

Author

Jason Kimberley, Jan 26 2012

Keywords

Crossrefs

10-regular simple graphs: A014382 (connected), this sequence (disconnected).
Disconnected regular simple graphs: A068932 (any degree), A068933 (triangular array), specified degree k: A165652 (k=2), A165653 (k=3), A033483 (k=4), A165655 (k=5), A165656 (k=6), A165877 (k=7), A165878 (k=8), A185293 (k=9), this sequence (k=10), A185213 (k=11).

Extensions

Terms a(29) and beyond from Andrew Howroyd, May 20 2020
Showing 1-10 of 12 results. Next